Cristina Giovanna Gervasini

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2953019/publications.pdf

Version: 2024-02-01

92 papers 2,424 citations

218677 26 h-index 233421 45 g-index

97 all docs 97
docs citations

97 times ranked 2997 citing authors

#	Article	IF	CITATIONS
1	DNA methylation episignature testing improves molecular diagnosis of Mendelian chromatinopathies. Genetics in Medicine, 2022, 24, 51-60.	2.4	24
2	Novel diagnostic DNA methylation episignatures expand and refine the epigenetic landscapes of Mendelian disorders. Human Genetics and Genomics Advances, 2022, 3, 100075.	1.7	42
3	Clinical Utility of a Unique Genome-Wide DNA Methylation Signature for KMT2A-Related Syndrome. International Journal of Molecular Sciences, 2022, 23, 1815.	4.1	8
4	Identical <scp><i>EP300</i></scp> variant leading to Rubinstein–Taybi syndrome with different clinical and immunologic phenotype. American Journal of Medical Genetics, Part A, 2022, 188, 2129-2134.	1.2	2
5	KMT2A: Umbrella Gene for Multiple Diseases. Genes, 2022, 13, 514.	2.4	17
6	LAM Cells as Potential Drivers of Senescence in Lymphangioleiomyomatosis Microenvironment. International Journal of Molecular Sciences, 2022, 23, 7040.	4.1	4
7	Expanding the phenotype associated to KMT2A variants: overlapping clinical signs between Wiedemann–Steiner and Rubinstein–Taybi syndromes. European Journal of Human Genetics, 2021, 29, 88-98.	2.8	11
8	Spontaneous chromosomal instability in peripheral blood lymphocytes from two molecularly confirmed Italian patients with Hereditary Fibrosis Poikiloderma: insights into cancer predisposition. Genetics and Molecular Biology, 2021, 44, e20200332.	1.3	10
9	Saliva detection of SARS-CoV-2 for mitigating company outbreaks: a surveillance experience, Milan, Italy, March 2021. Epidemiology and Infection, 2021, 149, e171.	2.1	6
10	Lithium as a possible therapeutic strategy for Cornelia de Lange syndrome. Cell Death Discovery, 2021, 7, 34.	4.7	10
11	Insights into the Role of the Microbiota and of Short-Chain Fatty Acids in Rubinstein–Taybi Syndrome. International Journal of Molecular Sciences, 2021, 22, 3621.	4.1	4
12	$\langle i \rangle$ SLC35F1 $\langle i \rangle$ as a candidate gene for neurodevelopmental disorders resembling Rett syndrome. American Journal of Medical Genetics, Part A, 2021, 185, 2238-2240.	1.2	5
13	Chromatin Imbalance as the Vertex Between Fetal Valproate Syndrome and Chromatinopathies. Frontiers in Cell and Developmental Biology, 2021, 9, 654467.	3.7	7
14	<i>ANKRD11</i> variants: <scp>KBG</scp> syndrome and beyond. Clinical Genetics, 2021, 100, 187-200.	2.0	21
15	Clinical relevance of postzygotic mosaicism in Cornelia de Lange syndrome and purifying selection of NIPBL variants in blood. Scientific Reports, 2021, 11, 15459.	3.3	11
16	Editorial: Impact on Embryonic Development of Chromatin Remodeling Alterations. Frontiers in Cell and Developmental Biology, 2021, 9, 744665.	3.7	0
17	Cohesin Mutations Induce Chromatin Conformation Perturbation of the H19/IGF2 Imprinted Region and Gene Expression Dysregulation in Cornelia de Lange Syndrome Cell Lines. Biomolecules, 2021, 11, 1622.	4.0	3
18	Myoclonic status epilepticus and cerebellar hypoplasia associated with a novel variant in the GRIA3 gene. Neurogenetics, 2021, , 1.	1.4	2

#	Article	IF	CITATIONS
19	Unexpected phenotype in a frameshift mutation of $\langle i \rangle$ PTCH1 $\langle i \rangle$. Molecular Genetics & amp; Genomic Medicine, 2020, 8, e987.	1.2	3
20	Chromatinopathies: A focus on Cornelia de Lange syndrome. Clinical Genetics, 2020, 97, 3-11.	2.0	34
21	Olfactory Malformations in Mendelian Disorders of the Epigenetic Machinery. Frontiers in Cell and Developmental Biology, 2020, 8, 710.	3.7	2
22	Transcriptome Analysis of iPSC-Derived Neurons from Rubinstein-Taybi Patients Reveals Deficits in Neuronal Differentiation. Molecular Neurobiology, 2020, 57, 3685-3701.	4.0	15
23	DNA Methylation in the Diagnosis of Monogenic Diseases. Genes, 2020, 11, 355.	2.4	28
24	Customised next-generation sequencing multigene panel to screen a large cohort of individuals with chromatin-related disorder. Journal of Medical Genetics, 2020, 57, 760-768.	3.2	15
25	Prevalence of Immunological Defects in a Cohort of 97 Rubinstein–Taybi Syndrome Patients. Journal of Clinical Immunology, 2020, 40, 851-860.	3.8	19
26	Generation of the Becker muscular dystrophy patient derived induced pluripotent stem cell line carrying the DMD splicing mutation c.1705-8 T>C Stem Cell Research, 2020, 45, 101819.	0.7	2
27	Establishment of a Duchenne muscular dystrophy patient-derived induced pluripotent stem cell line carrying a deletion of exons 51–53 of the dystrophin gene (CCMi003-A). Stem Cell Research, 2019, 40, 101544.	0.7	4
28	Generation of three iPSC lines (IAli002, IAli004, IAli003) from Rubinstein-Taybi syndrome 1 patients carrying CREBBP non sense c.4435G>T, p.(Gly1479*) and c.3474G>A, p.(Trp1158*) and missense c.4627G>T, p.(Asp1543Tyr) mutations. Stem Cell Research, 2019, 40, 101553.	0.7	6
29	Phenotypic Overlap of Roberts and Baller-Gerold Syndromes in Two Patients With Craniosynostosis, Limb Reductions, and ESCO2 Mutations. Frontiers in Pediatrics, 2019, 7, 210.	1.9	0
30	Exploring by whole exome sequencing patients with initial diagnosis of Rubinstein–Taybi syndrome: the interconnections of epigenetic machinery disorders. Human Genetics, 2019, 138, 257-269.	3.8	25
31	Molecular Etiology Disclosed by Array CGH in Patients With Silver–Russell Syndrome or Similar Phenotypes. Frontiers in Genetics, 2019, 10, 955.	2.3	11
32	Generation of induced pluripotent stem cells from a Becker muscular dystrophy patient carrying a deletion of exons 45-55 of the dystrophin gene (CCMi002BMD-A-9 â^†45-55). Stem Cell Research, 2018, 28, 21-24.	0.7	8
33	Rubinstein–Taybi syndrome: New neuroradiological and neuropsychiatric insights from a multidisciplinary approach. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 2018, 177, 406-415.	1.7	24
34	Perthes disease: A new finding in Floatingâ€Harbor syndrome. American Journal of Medical Genetics, Part A, 2018, 176, 703-706.	1.2	6
35	Generation of the Rubinstein-Taybi syndrome type 2 patient-derived induced pluripotent stem cell line (IAli001-A) carrying the EP300 exon 23 stop mutation c.3829Aâ€>â€T, p.(Lys1277*). Stem Cell Research, 20 30, 175-179.	018).7	4
36	Rothmund-Thomson Syndrome: Insights from New Patients on the Genetic Variability Underpinning Clinical Presentation and Cancer Outcome. International Journal of Molecular Sciences, 2018, 19, 1103.	4.1	20

#	Article	IF	CITATIONS
37	iPSC-derived neurons of CREBBP - and EP300 -mutated Rubinstein-Taybi syndrome patients show morphological alterations and hypoexcitability. Stem Cell Research, 2018, 30, 130-140.	0.7	19
38	Familial gastrointestinal stromal tumors, lentigines, and caféâ€auâ€lait macules associated with germline <i>câ€kit</i> mutation treated with imatinib. International Journal of Dermatology, 2017, 56, 195-201.	1.0	16
39	Mutations in chromatin regulators functionally link Cornelia de Lange syndrome and clinically overlapping phenotypes. Human Genetics, 2017, 136, 307-320.	3.8	61
40	Phenotypes and genotypes in individuals with <i>SMC1A</i> variants. American Journal of Medical Genetics, Part A, 2017, 173, 2108-2125.	1.2	69
41	Derivation of the Duchenne muscular dystrophy patient-derived induced pluripotent stem cell line lacking DMD exons 49 and 50 (CCMi001DMD-A-3, â^† 49, â^† 50). Stem Cell Research, 2017, 25, 128-131.	0.7	9
42	Rubinstein Taybi Syndrome in an Indian Child due to EP300 Gene Mutation: Correspondence. Indian Journal of Pediatrics, 2017, 84, 91-92.	0.8	O
43	From Whole Gene Deletion to Point Mutations of <i>EP300 < /i>-Positive Rubinstein-Taybi Patients: New Insights into the Mutational Spectrum and Peculiar Clinical Hallmarks. Human Mutation, 2016, 37, 175-183.</i>	2.5	36
44	Hepatoblastoma in Rubinstein-Taybi Syndrome: A Case Report. Pediatric Blood and Cancer, 2016, 63, 572-573.	1.5	6
45	A new prognostic index of severity of intellectual disabilities in Cornelia de Lange syndrome. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2016, 172, 179-189.	1.6	7
46	Thrombocytopenia and Cornelia de Lange syndrome: Still an enigma?. American Journal of Medical Genetics, Part A, 2016, 170, 130-134.	1.2	4
47	Phenotype and genotype in 52 patients with Rubinstein–Taybi syndrome caused by <i>EP300</i> mutations. American Journal of Medical Genetics, Part A, 2016, 170, 3069-3082.	1.2	91
48	Adolescents and adults affected by Cornelia de Lange syndrome: A report of 73 Italian patients. American Journal of Medical Genetics, Part C: Seminars in Medical Genetics, 2016, 172, 206-213.	1.6	22
49	Electroclinical phenotype in Rubinstein–Taybi syndrome. Brain and Development, 2016, 38, 563-570.	1.1	8
50	Ultra-Rare Syndromes: The Example of Rubinstein–Taybi Syndrome. Journal of Pediatric Genetics, 2015, 04, 177-186.	0.7	39
51	Dysmorphologic assessment in 115 Mayer–Rokitansky–Küster–Hauser patients. Clinical Dysmorphology, 2015, 24, 95-101.	0.3	9
52	Expanding the role of the splicing <i><scp>USB</scp>1</i> gene from Poikiloderma with Neutropenia to acquired myeloid neoplasms. British Journal of Haematology, 2015, 171, 557-565.	2.5	7
53	Potential impact of fetal genotype on maternal blood pressure during pregnancy. Journal of Hypertension, 2015, 33, 664-665.	0.5	4
54	Rubinstein-Taybi syndrome: clinical features, genetic basis, diagnosis, and management. Italian Journal of Pediatrics, 2015, 41, 4.	2.6	83

#	Article	IF	CITATIONS
55	Insights into genotype–phenotype correlations from <i><scp>CREBBP</scp></i> point mutation screening in a cohort of 46 Rubinstein–Taybi syndrome patients. Clinical Genetics, 2015, 88, 431-440.	2.0	51
56	<i>De Novo</i> Heterozygous Mutations in <i>SMC3</i> Cause a Range of Cornelia de Lange Syndrome-Overlapping Phenotypes. Human Mutation, 2015, 36, 454-462.	2.5	72
57	Clinical and molecular characterization of Rubinsteinâ€Taybi syndrome patients carrying distinct novel mutations of the <i><scp>EP300</scp></i> gene. Clinical Genetics, 2015, 87, 148-154.	2.0	7 5
58	Characterization of 14 novel deletions underlying Rubinstein–Taybi syndrome: an update of the CREBBP deletion repertoire. Human Genetics, 2015, 134, 613-626.	3.8	38
59	Overall and allele-specific expression of the SMC1 Agene in female Cornelia de Lange syndrome patients and healthy controls. Epigenetics, 2014, 9, 973-979.	2.7	10
60	Functional characterisation of a novel mutation affecting the catalytic domain of MMP2 in siblings with multicentric osteolysis, nodulosis and arthropathy. Journal of Human Genetics, 2014, 59, 631-637.	2.3	11
61	Cervical spine malformation in cornelia de lange syndrome: A report of three patients. American Journal of Medical Genetics, Part A, 2014, 164, 1520-1524.	1.2	6
62	Unusual prenatal presentation of Rubinstein–Taybi syndrome: A case report. American Journal of Medical Genetics, Part A, 2014, 164, 2663-2666.	1.2	6
63	Genomic imbalances in patients with a clinical presentation in the spectrum of Cornelia de Lange syndrome. BMC Medical Genetics, 2013, 14, 41.	2.1	15
64	Cornelia de Lange individuals with new and recurrent <i>SMC1A</i> mutations enhance delineation of mutation repertoire and phenotypic spectrum. American Journal of Medical Genetics, Part A, 2013, 161, 2909-2919.	1.2	31
65	Molecular characterization of a mosaic NIPBL deletion in a Cornelia de Lange patient with severe phenotype. European Journal of Medical Genetics, 2013, 56, 138-143.	1.3	24
66	Germline mosaicism in cornelia de lange syndrome: Dilemmas and risk figures. American Journal of Medical Genetics, Part A, 2013, 161, 1825-1826.	1.2	2
67	A novel mosaic <i>NSD1</i> intragenic deletion in a patient with an atypical phenotype. American Journal of Medical Genetics, Part A, 2013, 161, 611-618.	1.2	8
68	Intragenic and large NIPBL rearrangements revealed by MLPA in Cornelia de Lange patients. European Journal of Human Genetics, 2012, 20, 734-741.	2.8	23
69	Histone acetylation deficits in lymphoblastoid cell lines from patients with Rubinstein–Taybi syndrome. Journal of Medical Genetics, 2012, 49, 66-74.	3.2	58
70	A new report of Cornelia de Lange syndrome associated with split hand and feet. American Journal of Medical Genetics, Part A, 2012, 158A, 2953-2955.	1.2	3
71	High frequency of copy number imbalances in Rubinstein–Taybi patients negative to CREBBP mutational analysis. European Journal of Human Genetics, 2010, 18, 768-775.	2.8	13
72	Somatic mosaicism in Cornelia de Lange syndrome: a further contributor to the wide clinical expressivity?. Clinical Genetics, 2010, 78, 560-564.	2.0	30

#	Article	IF	CITATIONS
73	SHOX duplications found in some cases with type I Mayer-Rokitansky-Kuster-Hauser syndrome. Genetics in Medicine, 2010, 12, 634-640.	2.4	67
74	Premature chromatid separation is not a useful diagnostic marker for Cornelia de Lange syndrome. Chromosome Research, 2009, 17, 763-771.	2.2	49
7 5	Recurrent microdeletion at 17q12 as a cause of Mayer-Rokitansky-Kuster-Hauser (MRKH) syndrome: two case reports. Orphanet Journal of Rare Diseases, 2009, 4, 25.	2.7	105
76	Developmental Abnormalities and Cancer Predisposition in Neurofibromatosis Type 1. Current Molecular Medicine, 2009, 9, 634-653.	1.3	32
77	Search for genomic imbalances in a cohort of 24 Cornelia de Lange patients negative for mutations in the <i>NIPBL </i> and <i>SMC1L1 </i> genes. Clinical Genetics, 2008, 74, 531-538.	2.0	11
78	Prenatal/neonatal pathology in two cases of Cornelia de Lange syndrome harboring novel mutations of NIPBL. Genetics in Medicine, 2007, 9, 188-194.	2.4	18
79	High frequency of mosaic CREBBP deletions in Rubinstein–Taybi syndrome patients and mapping of somatic and germ-line breakpoints. Genomics, 2007, 90, 567-573.	2.9	42
80	Functional analysis of splicing mutations in exon 7 of NF1gene. BMC Medical Genetics, 2007, 8, 4.	2.1	32
81	Clinical score of 62 Italian patients with Cornelia de Lange syndrome and correlations with the presence and type of <i>NIPBL</i> mutation. Clinical Genetics, 2007, 72, 98-108.	2.0	93
82	Rubinstein-Taybi Syndrome: spectrum of CREBBP mutations in Italian patients. BMC Medical Genetics, 2006, 7, 77.	2.1	60
83	X-linked Cornelia de Lange syndrome owing to SMC1L1 mutations. Nature Genetics, 2006, 38, 528-530.	21.4	393
84	Uncommon Alu-mediated NF1 microdeletion with a breakpoint inside the NF1 gene. Genomics, 2005, 85, 273-279.	2.9	13
85	Evidence for non-homologous end joining and non-allelic homologous recombination in atypical NF1 microdeletions. Human Genetics, 2004, 115, 69-80.	3.8	41
86	NF1 exon�7 skipping and sequence alterations in exonic splice enhancers (ESEs) in a neurofibromatosis�1 patient. Human Genetics, 2003, 113, 551-554.	3.8	35
87	Tandem duplication of the NF1 gene detected by high-resolution FISH in the 17q11.2 region. Human Genetics, 2002, 110, 314-321.	3.8	17
88	Genomic evidence versus characterisation of a single (17;22) translocation on NF1 gene duplication: lessons from deletions in "balanced" chromosomal rearrangements. Reply. Human Genetics, 2002, 111, 468-469.	3.8	4
89	FISH with locus-specific probes on stretched chromosomes: a useful tool for genome organization studies. Chromosome Research, 2001, 9, 167-170.	2,2	5
90	Title is missing!. Chromosome Research, 2001, 9, 520-520.	2.2	0

#	Article	IF	CITATIONS
91	Identification of duplicated genes in 17q11.2 using FISH on stretched chromosomes and DNA fibers. Human Genetics, 2001, 109, 48-54.	3.8	6
92	Mapping of genes and ESTs assigned to 17q11.2 to a YAC contig centred on the NF1 gene. GeneScreen, 2000, 1, 21-27.	0.6	3