Meng-liang Zhou

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2952897/publications.pdf

Version: 2024-02-01

68 papers

2,820 citations

34 h-index 51 g-index

70 all docs 70 docs citations

70 times ranked

3604 citing authors

#	Article	IF	Citations
1	Inhibition of TRPA1 Attenuates Oxidative Stress-induced Damage After Traumatic Brain Injury via the ERK/AKT Signaling Pathway. Neuroscience, 2022, 494, 51-68.	1.1	6
2	Metabotropic glutamate receptor 5 upregulation of \hat{I}^3 -aminobutyric acid transporter 3 expression ameliorates cognitive impairment after traumatic brain injury in mice. Brain Research Bulletin, 2022, 183, 104-115.	1.4	6
3	Peroxisome proliferator-activated receptor- \hat{l}^3 ameliorates neuronal ferroptosis after traumatic brain injury in mice by inhibiting cyclooxygenase-2. Experimental Neurology, 2022, 354, 114100.	2.0	22
4	Activation of silent information regulator 1 exerts a neuroprotective effect after intracerebral hemorrhage by deacetylating NFâ€₽B/p65. Journal of Neurochemistry, 2021, 157, 574-585.	2.1	13
5	Retinal hypoxia after experimental subarachnoid hemorrhage. Neuroscience Letters, 2021, 742, 135554.	1.0	3
6	FTY720 Reduces Endothelial Cell Apoptosis and Remodels Neurovascular Unit after Experimental Traumatic Brain Injury. International Journal of Medical Sciences, 2021, 18, 304-313.	1.1	10
7	Deferoxamine reduces amyloid-beta peptides genesis and alleviates neural apoptosis after traumatic brain injury. NeuroReport, 2021, 32, 472-478.	0.6	5
8	A Modified Treatment Through Point-to-Point Coil Embolization for Direct Carotid Cavernous to Fistula: A Single-Center Result. Frontiers in Neurology, 2021, 12, 639552.	1.1	1
9	Expression of FOXO transcription factors in the brain following traumatic brain injury. Neuroscience Letters, 2021, 753, 135882.	1.0	8
10	A20 Establishes Negative Feedback With TRAF6/NF-κB and Attenuates Early Brain Injury After Experimental Subarachnoid Hemorrhage. Frontiers in Immunology, 2021, 12, 623256.	2.2	24
11	LncRNA NEAT1 Enhances Glioma Progression via Regulating the miR-128-3p/ITGA5 Axis. Molecular Neurobiology, 2021, 58, 5163-5177.	1.9	13
12	Restoration of Brain Angiotensin-Converting Enzyme 2 Alleviates Neurological Deficits after Severe Traumatic Brain Injury via Mitigation of Pyroptosis and Apoptosis. Journal of Neurotrauma, 2021, , .	1.7	10
13	Podoplanin influences the inflammatory phenotypes and mobility of microglia in traumatic brain injury. Biochemical and Biophysical Research Communications, 2020, 523, 361-367.	1.0	25
14	<p>Knockdown of T Cell Immunoglobulin and Mucin 1 (Tim-1) Suppresses Glioma Progression Through Inhibition of the Cytokine-PI3K/AKT Pathway</p> . OncoTargets and Therapy, 2020, Volume 13, 7433-7445.	1.0	4
15	Neuroprotective role of glutathione peroxidase 4 in experimental subarachnoid hemorrhage models. Life Sciences, 2020, 257, 118050.	2.0	27
16	FOXO4 expression associates with glioblastoma development and FOXO4 expression inhibits cell malignant phenotypes in vitro and in vivo. Life Sciences, 2020, 247, 117436.	2.0	8
17	Neuroprotection by quercetin <i>via</i> mitochondrial function adaptation in traumatic brain injury: PGCâ€Î± pathway as a potential mechanism. Journal of Cellular and Molecular Medicine, 2018, 22, 883-891.	1.6	38
18	Curcumin provides neuroprotection in model of traumatic brain injury via the Nrf2-ARE signaling pathway. Brain Research Bulletin, 2018, 140, 65-71.	1.4	74

#	Article	IF	CITATIONS
19	Inhibition of leukotriene B4 synthesis protects against early brain injury possibly via reducing the neutrophil-generated inflammatory response and oxidative stress after subarachnoid hemorrhage in rats. Behavioural Brain Research, 2018, 339, 19-27.	1.2	21
20	SS-31 Provides Neuroprotection by Reversing Mitochondrial Dysfunction after Traumatic Brain Injury. Oxidative Medicine and Cellular Longevity, 2018, 2018, 1-12.	1.9	42
21	Valproic Acid Attenuates Traumatic Brain Injury-Induced Inflammation in Vivo: Involvement of Autophagy and the Nrf2/ARE Signaling Pathway. Frontiers in Molecular Neuroscience, 2018, 11, 117.	1.4	61
22	Biochanin A Reduces Inflammatory Injury and Neuronal Apoptosis following Subarachnoid Hemorrhage via Suppression of the TLRs/TIRAP/MyD88/NF- <i>κ</i> B Pathway. Behavioural Neurology, 2018, 2018, 1-10.	1.1	41
23	Baicalin provides neuroprotection in traumatic brain injury mice model through Akt/Nrf2 pathway. Drug Design, Development and Therapy, 2018, Volume 12, 2497-2508.	2.0	71
24	Baicalin Protects Mice Brain From Apoptosis in Traumatic Brain Injury Model Through Activation of Autophagy. Frontiers in Neuroscience, 2018, 12, 1006.	1.4	35
25	Mitochondrial-targeted antioxidant MitoQ provides neuroprotection and reduces neuronal apoptosis in experimental traumatic brain injury possibly via the Nrf2-ARE pathway. American Journal of Translational Research (discontinued), 2018, 10, 1887-1899.	0.0	40
26	dl-3-n-Butylphthalide (NBP) Provides Neuroprotection in the Mice Models After Traumatic Brain Injury via Nrf2-ARE Signaling Pathway. Neurochemical Research, 2017, 42, 1375-1386.	1.6	36
27	Pentoxifylline Alleviates Early Brain Injury After Experimental Subarachnoid Hemorrhage in Rats: Possibly via Inhibiting TLR 4/NF-κB Signaling Pathway. Neurochemical Research, 2017, 42, 963-974.	1.6	22
28	Resveratrol Attenuates Early Brain Injury after Experimental Subarachnoid Hemorrhage via Inhibition of NLRP3 Inflammasome Activation. Frontiers in Neuroscience, 2017, 11, 611.	1.4	88
29	Roles of Pannexin-1 Channels in Inflammatory Response through the TLRs/NF-Kappa B Signaling Pathway Following Experimental Subarachnoid Hemorrhage in Rats. Frontiers in Molecular Neuroscience, 2017, 10, 175.	1.4	46
30	Tetrahydrocurcumin reduces oxidative stress-induced apoptosis via the mitochondrial apoptotic pathway by modulating autophagy in rats after traumatic brain injury. American Journal of Translational Research (discontinued), 2017, 9, 887-899.	0.0	34
31	Resveratrol Attenuates Acute Inflammatory Injury in Experimental Subarachnoid Hemorrhage in Rats via Inhibition of TLR4 Pathway. International Journal of Molecular Sciences, 2016, 17, 1331.	1.8	63
32	Sinomenine Provides Neuroprotection in Model of Traumatic Brain Injury via the Nrf2–ARE Pathway. Frontiers in Neuroscience, 2016, 10, 580.	1.4	37
33	The effect of subarachnoid erythrocyte lysate on brain injury: a preliminary study. Bioscience Reports, 2016, 36, .	1.1	12
34	Expression and cell distribution of leukotriene B4 receptor 1 in the rat brain cortex after experimental subarachnoid hemorrhage. Brain Research, 2016, 1652, 127-134.	1.1	19
35	Tetrahydrocurcumin provides neuroprotection in rats after traumatic brain injury: autophagy and the PI3K/AKT pathways as a potential mechanism. Journal of Surgical Research, 2016, 206, 67-76.	0.8	50
36	Sirtuin 1 activation protects against early brain injury after experimental subarachnoid hemorrhage in rats. Cell Death and Disease, 2016, 7, e2416-e2416.	2.7	112

#	Article	IF	Citations
37	Akt Specific Activator SC79 Protects against Early Brain Injury following Subarachnoid Hemorrhage. ACS Chemical Neuroscience, 2016, 7, 710-718.	1.7	40
38	Protective Effects of Quercetin on Mitochondrial Biogenesis in Experimental Traumatic Brain Injury via the Nrf2 Signaling Pathway. PLoS ONE, 2016, 11, e0164237.	1.1	73
39	Quercetin induces mitochondrial biogenesis in experimental traumatic brain injury via the PGC-1α signaling pathway. American Journal of Translational Research (discontinued), 2016, 8, 3558-66.	0.0	9
40	Alpha lipoic acid inhibits neural apoptosis via a mitochondrial pathway in rats following traumatic brain injury. Neurochemistry International, 2015, 87, 85-91.	1.9	42
41	Fisetin alleviates early brain injury following experimental subarachnoid hemorrhage in rats possibly by suppressing TLR 4/NF-κB signaling pathway. Brain Research, 2015, 1629, 250-259.	1.1	40
42	Decreased progranulin levels in patients and rats with subarachnoid hemorrhage: a potential role in inhibiting inflammation by suppressing neutrophil recruitment. Journal of Neuroinflammation, 2015, 12, 200.	3.1	30
43	Constriction and dysfunction of pial arterioles after regional hemorrhage in the subarachnoid space. Brain Research, 2015, 1601, 85-91.	1.1	3
44	Expression of Cytoplasmic Gelsolin in Rat Brain After Experimental Subarachnoid Hemorrhage. Cellular and Molecular Neurobiology, 2015, 35, 723-731.	1.7	3
45	TGFÎ ² -activated Kinase 1 (TAK1) Inhibition by 5Z-7-Oxozeaenol Attenuates Early Brain Injury after Experimental Subarachnoid Hemorrhage. Journal of Biological Chemistry, 2015, 290, 19900-19909.	1.6	41
46	Baincalein alleviates early brain injury after experimental subarachnoid hemorrhage in rats: Possible involvement of TLR4/NF-IºB-mediated inflammatory pathway. Brain Research, 2015, 1594, 245-255.	1.1	46
47	Astaxanthin Alleviates Early Brain Injury Following Subarachnoid Hemorrhage in Rats: Possible Involvement of Akt/Bad Signaling. Marine Drugs, 2014, 12, 4291-4310.	2.2	68
48	Astaxanthin Activates Nuclear Factor Erythroid-Related Factor 2 and the Antioxidant Responsive Element (Nrf2-ARE) Pathway in the Brain after Subarachnoid Hemorrhage in Rats and Attenuates Early Brain Injury. Marine Drugs, 2014, 12, 6125-6141.	2.2	135
49	Differential Nrf2 expression between glioma stem cells and non-stem-like cells in glioblastoma. Oncology Letters, 2014, 7, 693-698.	0.8	22
50	Ghrelin alleviates early brain injury after subarachnoid hemorrhage via the PI3K/Akt signaling pathway. Brain Research, 2014, 1587, 15-22.	1.1	29
51	SIRT1 inhibition by sirtinol aggravates brain edema after experimental subarachnoid hemorrhage. Journal of Neuroscience Research, 2014, 92, 714-722.	1.3	32
52	Cyclosporin A ameliorates early brain injury after subarachnoid hemorrhage through inhibition of a Nur77 dependent apoptosis pathway. Brain Research, 2014, 1556, 67-76.	1.1	17
53	Genetic elimination of Nrf2 aggravates secondary complications except for vasospasm after experimental subarachnoid hemorrhage in mice. Brain Research, 2014, 1558, 90-99.	1.1	35
54	Expression and cell distribution of receptor for advanced glycation end-products in the rat cortex following experimental subarachnoid hemorrhage. Brain Research, 2014, 1543, 315-323.	1.1	50

#	Article	IF	Citations
55	Amelioration of oxidative stress and protection against early brain injury by astaxanthin after experimental subarachnoid hemorrhage. Journal of Neurosurgery, 2014, 121, 42-54.	0.9	103
56	Resveratrol prevents neuronal apoptosis in an early brain injury model. Journal of Surgical Research, 2014, 189, 159-165.	0.8	44
57	Melatonin stimulates antioxidant enzymes and reduces oxidative stress in experimental traumatic brain injury: the Nrf2–ARE signaling pathway as a potential mechanism. Free Radical Biology and Medicine, 2014, 73, 1-11.	1.3	187
58	Astaxanthin offers neuroprotection and reduces neuroinflammation in experimental subarachnoid hemorrhage. Journal of Surgical Research, 2014, 192, 206-213.	0.8	103
59	TLR4 inhibitor resatorvid provides neuroprotection in experimental traumatic brain injury: Implication in the treatment of human brain injury. Neurochemistry International, 2014, 75, 11-18.	1.9	42
60	Targeting the NF-E2-related factor 2 pathway: A novel strategy for glioblastoma (Review). Oncology Reports, 2014, 32, 443-450.	1.2	24
61	Activation of Nuclear Factor-κB in the Brain after Experimental Subarachnoid Hemorrhage and Its Potential Role in Delayed Brain Injury. PLoS ONE, 2013, 8, e60290.	1.1	55
62	Biphasic Activation of Nuclear Factor-Kappa B in Experimental Models of Subarachnoid Hemorrhage <i>In Vivo</i> And <i>In Vitro</i> Amediators of Inflammation, 2012, 2012, 1-10.	1.4	27
63	Hydrogen-rich saline alleviates early brain injury via reducing oxidative stress and brain edema following experimental subarachnoid hemorrhage in rabbits. BMC Neuroscience, 2012, 13, 47.	0.8	78
64	Cerebrovascular Dysfunction in Amyloid Precursor Protein Transgenic Mice: Contribution of Soluble and Insoluble Amyloid-Î ² Peptide, Partial Restoration via Î ³ -Secretase Inhibition. Journal of Neuroscience, 2008, 28, 13542-13550.	1.7	117
65	The Inflammation in the Gut After Experimental Subarachnoid Hemorrhage. Journal of Surgical Research, 2007, 137, 103-108.	0.8	26
66	Potential Contribution of Nuclear Factor-l̂ºB to Cerebral Vasospasm after Experimental Subarachnoid Hemorrhage in Rabbits. Journal of Cerebral Blood Flow and Metabolism, 2007, 27, 1583-1592.	2.4	83
67	Expression of Toll-like receptor 4 in the basilar artery after experimental subarachnoid hemorrhage in rabbits: A preliminary study. Brain Research, 2007, 1173, 110-116.	1.1	37
68	Comparison between one- and two-hemorrhage models of cerebral vasospasm in rabbits. Journal of Neuroscience Methods, 2007, 159, 318-324.	1.3	50