Sergio Savino

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2952855/publications.pdf

Version: 2024-02-01

623734 526287 59 851 14 27 citations g-index h-index papers 67 67 67 611 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Design of a 3D-Printed Hand Exoskeleton Based on Force-Myography Control for Assistance and Rehabilitation. Machines, 2022, 10, 57.	2.2	27
2	Experimental Investigation on the Kinematics of an Underactuated Mechanical Finger through Vision-Based Technology. WSEAS Transactions on Environment and Development, 2022, 18, 322-332.	0.7	0
3	Multibody Model for the Design of a Rover for Agricultural Applications: A Preliminary Study. Machines, 2022, 10, 235.	2.2	4
4	Motion Sensing Study on a Mobile Robot Through Simulation Model and Experimental Tests. WSEAS Transactions on Applied and Theoretical Mechanics, 2022, 17, 79-85.	1.1	1
5	A simplified model of a multi-jointed mechanical finger calibrated with experimental data by vision system. Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics, 2021, 235, 164-175.	0.8	3
6	Evaluation of Grip Force and Energy Efficiency of the "Federica―Hand. Machines, 2021, 9, 25.	2.2	15
7	The "Federica―Hand. Bioengineering, 2021, 8, 128.	3.5	12
8	Mechanical System Control by RGB-D Device. Machines, 2021, 9, 3.	2.2	10
9	A Smart Gluing Process by a Vision Guided Robotic System. Mechanisms and Machine Science, 2021, , 414-422.	0.5	2
10	A Vision Guided Robot for Gluing Operations. , 2021, , 15-28.		1
10		1.1	5
	A Vision Guided Robot for Gluing Operations. , 2021, , 15-28. Study on the Dispersion of Lubricant Film From a Cylindrical Gearwheels with Helical Teeth by	1.1	
11	A Vision Guided Robot for Gluing Operations., 2021,, 15-28. Study on the Dispersion of Lubricant Film From a Cylindrical Gearwheels with Helical Teeth by Vibrational Analysis. WSEAS Transactions on Applied and Theoretical Mechanics, 2021, 16, 274-282.		5
11 12	A Vision Guided Robot for Gluing Operations., 2021,, 15-28. Study on the Dispersion of Lubricant Film From a Cylindrical Gearwheels with Helical Teeth by Vibrational Analysis. WSEAS Transactions on Applied and Theoretical Mechanics, 2021, 16, 274-282. Preservation of neurons in an AD 79 vitrified human brain. PLoS ONE, 2020, 15, e0240017. Vision based techniques for the experimental characterization of a prosthetic finger model. Journal	2.5	5
11 12 13	A Vision Guided Robot for Gluing Operations., 2021, , 15-28. Study on the Dispersion of Lubricant Film From a Cylindrical Gearwheels with Helical Teeth by Vibrational Analysis. WSEAS Transactions on Applied and Theoretical Mechanics, 2021, 16, 274-282. Preservation of neurons in an AD 79 vitrified human brain. PLoS ONE, 2020, 15, e0240017. Vision based techniques for the experimental characterization of a prosthetic finger model. Journal of Physics: Conference Series, 2020, 1589, 012013. A vision guided robotic system for flexible gluing process in the footwear industry. Robotics and	2.5	5 5 0
11 12 13	A Vision Guided Robot for Gluing Operations. , 2021, , 15-28. Study on the Dispersion of Lubricant Film From a Cylindrical Gearwheels with Helical Teeth by Vibrational Analysis. WSEAS Transactions on Applied and Theoretical Mechanics, 2021, 16, 274-282. Preservation of neurons in an AD 79 vitrified human brain. PLoS ONE, 2020, 15, e0240017. Vision based techniques for the experimental characterization of a prosthetic finger model. Journal of Physics: Conference Series, 2020, 1589, 012013. A vision guided robotic system for flexible gluing process in the footwear industry. Robotics and Computer-Integrated Manufacturing, 2020, 65, 101965. Study on the Activation Speed and the Energy Consumption of "Federica―Prosthetic Hand. IFMBE	2.5 0.4 9.9	5 5 0 30
11 12 13 14	A Vision Guided Robot for Gluing Operations., 2021, , 15-28. Study on the Dispersion of Lubricant Film From a Cylindrical Gearwheels with Helical Teeth by Vibrational Analysis. WSEAS Transactions on Applied and Theoretical Mechanics, 2021, 16, 274-282. Preservation of neurons in an AD 79 vitrified human brain. PLoS ONE, 2020, 15, e0240017. Vision based techniques for the experimental characterization of a prosthetic finger model. Journal of Physics: Conference Series, 2020, 1589, 012013. A vision guided robotic system for flexible gluing process in the footwear industry. Robotics and Computer-Integrated Manufacturing, 2020, 65, 101965. Study on the Activation Speed and the Energy Consumption of "Federica―Prosthetic Hand. IFMBE Proceedings, 2020, , 594-603.	2.5 0.4 9.9	5 5 0 30 6

#	Article	IF	Citations
19	Nonlinear methodology for assessing vibrational dynamics of a single gear pair under different tribological conditions. Mechanisms and Machine Science, 2019, , 4127-4134.	0.5	2
20	Elasto-Kinematic Characteristics of Car Suspensions with Magneto-Rheological Bushings. Mechanisms and Machine Science, 2018, , 414-423.	0.5	0
21	A mechanical hand for prosthetic applications: multibody model and contact simulation. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2018, 232, 819-825.	1.8	8
22	A Piezoresistive Sensor to Measure Muscle Contraction and Mechanomyography. Sensors, 2018, 18, 2553.	3.8	83
23	Influence of the Tendon Design on the Behavior of an Under-Actuated Finger. Mechanisms and Machine Science, 2018, , 1033-1042.	0.5	0
24	Microsoft Kinect V2 vision system in a manufacturing application. Robotics and Computer-Integrated Manufacturing, 2017, 48, 174-181.	9.9	35
25	Windmills: Ancestors of the wind power generation. Frontiers of Mechanical Engineering, 2017, 12, 389-396.	4.3	4
26	Multibody Model to Evaluate Quality Grasping of an Underactuated Mechanical Finger. Advances in Intelligent Systems and Computing, 2017, , 198-207.	0.6	2
27	A stretchable, conductive rubber sensor to detect muscle contraction for prosthetic hand control. , 2017, , .		16
28	An Analysis of the Hydraulic Saw of Hierapolis. Mechanisms and Machine Science, 2017, , 135-142.	0.5	1
29	Study of an Underactuated Mechanical Finger Driven by Tendons. International Journal of Automation Technology, 2017, 11, 344-354.	1.0	5
30	Multibody Model of Under-Actuated Tendon Driven Finger to Study the Antagonist Tendon. Mechanisms and Machine Science, 2017, , 175-182.	0.5	0
31	Gripping Tests on an Underactuated Self-adapting Hand Prototype. CISM International Centre for Mechanical Sciences, Courses and Lectures, 2016, , 199-206.	0.6	0
32	A model for the grasping analysis of an underactuated finger driven by unextensible tendon. MATEC Web of Conferences, 2016, 76, 04044.	0.2	1
33	Analysis of suitable geometrical parameters for designing a tendon-driven under-actuated mechanical finger. Frontiers of Mechanical Engineering, 2016, 11, 184-194.	4.3	2
34	Under-Actuated Finger Driven by Un-extendible Tendons Grasping Tests by WM 2Dâ,,¢., 2016,,.		0
35	Simulation results of the grasping analysis of an underactuated finger. MATEC Web of Conferences, 2016, 76, 04045.	0.2	0
36	Ancient road transport devices: Developments from the Bronze Age to the Roman Empire. Frontiers of Mechanical Engineering, 2016, 11, 12-25.	4.3	8

#	Article	IF	CITATIONS
37	Dynamical Model and Prototype Tests of a Self-Adaptive Mechanical Hand. International Review on Modelling and Simulations, 2016, 9, 97.	0.3	5
38	Dynamic Behaviour of an Underactuated Finger. Advances in Intelligent Systems and Computing, 2016, , 79-87.	0.6	0
39	Performance Comparison Between FEDERICA Hand and LARM Hand. International Journal of Advanced Robotic Systems, 2015, 12, 90.	2.1	33
40	A study of a robotic hand with tendon driven fingers. Robotica, 2015, 33, 1034-1048.	1.9	27
41	Performance of Greek–Roman Artillery. Arms and Armour, 2015, 12, 67-89.	0.3	5
42	A gear rattle metric based on the wavelet multi-resolution analysis: Experimental investigation. Mechanical Systems and Signal Processing, 2015, 50-51, 161-173.	8.0	17
43	Mechanical behavior of the imperial carroballista. Mechanism and Machine Theory, 2014, 80, 142-150.	4.5	15
44	An Underactuated Multi-finger Grasping Device. International Journal of Advanced Robotic Systems, 2014, 11, 20.	2.1	22
45	An underactuated mechanical hand: A first prototype. , 2014, , .		16
46	A New Mechanical Hand: Theoretical Studies and First Prototyping. International Review of Mechanical Engineering, 2014, 8, 835.	0.2	12
47	Analysis of gear rattle by means of a wavelet-based signal processing procedure. Meccanica, 2013, 48, 1399-1413.	2.0	14
48	Robot trajectory planning by assigning positions and tangential velocities. Robotics and Computer-Integrated Manufacturing, 2013, 29, 139-156.	9.9	45
49	An algorithm for robot motion detection by means of a stereoscopic vision system. Advanced Robotics, 2013, 27, 981-991.	1.8	3
50	Mechanical model of a single tendon finger. , 2013, , .		11
51	Gear Rattle Analysis Based on Wavelet Signal Decomposition. , 2012, , .		0
52	A Robotic System to Scan and Reproduce Object. Journal of Robotics, 2011, 2011, 1-11.	0.9	1
53	A method for the calibration of a 3-D laser scanner. Robotics and Computer-Integrated Manufacturing, 2011, 27, 479-484.	9.9	40
54	A new real-time shape acquisition with a laser scanner: first test results. Robotics and Computer-Integrated Manufacturing, 2010, 26, 543-550.	9.9	20

SERGIO SAVINO

#	Article	IF	CITATIONS
55	Method and equipment for inertia parameter identification. Mechanical Systems and Signal Processing, 2010, 24, 29-40.	8.0	38
56	3D Object Reconstruction Using a Robot Arm. , 2009, , 513-521.		3
57	Video System in Robotic Applications. , 2008, , .		2
58	An Application of Vision Systems to the Path Planning of Industrial Robots., 2007,, 586-594.		3
59	Experimental investigation on elastic joint robot dynamics. , 0, , .		1