
Stephen C Kolwicz Jr

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2952621/publications.pdf Version: 2024-02-01

STERHEN C KOLWICZ IR

#	Article	IF	CITATIONS
1	Sex differences in endurance exercise capacity and skeletal muscle lipid metabolism in mice. Physiological Reports, 2022, 10, e15174.	0.7	11
2	Male and Female Mice Respond Differently to Shortâ€ŧerm Ketogenic Diet. FASEB Journal, 2022, 36, .	0.2	0
3	Upregulation of mitochondrial ATPase inhibitory factor 1 (ATPIF1) mediates increased glycolysis in mouse hearts. Journal of Clinical Investigation, 2022, 132, .	3.9	17
4	Exercise regulates cardiac metabolism: Sex does matter. Journal of Sport and Health Science, 2022, 11, 418-420.	3.3	2
5	The Effects of Fasting or Ketogenic Diet on Endurance Exercise Performance and Metabolism in Female Mice. Metabolites, 2021, 11, 397.	1.3	9
6	Increasing fatty acid oxidation elicits a sex-dependent response in failing mouse hearts. Journal of Molecular and Cellular Cardiology, 2021, 158, 1-10.	0.9	19
7	Ketone Body Metabolism in the Ischemic Heart. Frontiers in Cardiovascular Medicine, 2021, 8, 789458.	1.1	11
8	Metabolic Remodeling Promotes Cardiac Hypertrophy by Directing Glucose to Aspartate Biosynthesis. Circulation Research, 2020, 126, 182-196.	2.0	135
9	Increasing Fatty Acid Oxidation Prevents High-Fat Diet–Induced Cardiomyopathy Through Regulating Parkin-Mediated Mitophagy. Circulation, 2020, 142, 983-997.	1.6	103
10	Gene Therapy Rescues Cardiac Dysfunction in Duchenne Muscular DystrophyÂMice by Elevating Cardiomyocyte Deoxy-Adenosine Triphosphate. JACC Basic To Translational Science, 2019, 4, 778-791.	1.9	15
11	Myocardial Dysfunction after Severe Food Restriction Is Linked to Changes in the Calcium-Handling Properties in Rats. Nutrients, 2019, 11, 1985.	1.7	6
12	Fatty Acids Enhance the Maturation of Cardiomyocytes Derived from Human Pluripotent Stem Cells. Stem Cell Reports, 2019, 13, 657-668.	2.3	187
13	Ketogenic Diets and Exercise Performance. Nutrients, 2019, 11, 2296.	1.7	48
14	Endurance Exercise Capacity and Substrate Metabolism in Male and Female Mice. FASEB Journal, 2019, 33, 698.1.	0.2	3
15	Increased cardiac fatty acid oxidation in a mouse model with decreased malonyl-CoA sensitivity of CPT1B. Cardiovascular Research, 2018, 114, 1324-1334.	1.8	37
16	Glucose promotes cell growth by suppressing branched-chain amino acid degradation. Nature Communications, 2018, 9, 2935.	5.8	115
17	An "Exercise―in Cardiac Metabolism. Frontiers in Cardiovascular Medicine, 2018, 5, 66.	1.1	30
18	Heart specific knockout of Ndufs4 ameliorates ischemia reperfusion injury. Journal of Molecular and Cellular Cardiology, 2018, 123, 38-45.	0.9	35

STEPHEN C KOLWICZ JR

#	Article	IF	CITATIONS
19	Pathological hypertrophy and cardiac dysfunction are linked to aberrant endogenous unsaturated fatty acid metabolism. PLoS ONE, 2018, 13, e0193553.	1.1	12
20	Defective Branched-Chain Amino Acid Catabolism Disrupts Glucose Metabolism and Sensitizes the Heart to Ischemia-Reperfusion Injury. Cell Metabolism, 2017, 25, 374-385.	7.2	289
21	The effects of fatty acid composition on cardiac hypertrophy and function in mouse models of diet-induced obesity. Journal of Nutritional Biochemistry, 2017, 46, 137-142.	1.9	20
22	Rapamycin transiently induces mitochondrial remodeling to reprogram energy metabolism in old hearts. Aging, 2016, 8, 314-327.	1.4	104
23	Response to Comment on Kolwicz et al. Enhancing Cardiac Triacylglycerol Metabolism Improves Recovery From Ischemic Stress. Diabetes 2015;64:2817–2827. Diabetes, 2016, 65, e19-e20.	0.3	Ο
24	Preservation of myocardial fatty acid oxidation prevents diastolic dysfunction in mice subjected to angiotensin II infusion. Journal of Molecular and Cellular Cardiology, 2016, 100, 64-71.	0.9	61
25	Lipid partitioning during cardiac stress. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2016, 1861, 1472-1480.	1.2	8
26	AAV6-mediated Cardiac-specific Overexpression of Ribonucleotide Reductase Enhances Myocardial Contractility. Molecular Therapy, 2016, 24, 240-250.	3.7	32
27	Ketones Step to the Plate. Circulation, 2016, 133, 689-691.	1.6	59
28	Enhancing Cardiac Triacylglycerol Metabolism Improves Recovery From Ischemic Stress. Diabetes, 2015, 64, 2817-2827.	0.3	30
29	Promoting PGC-1α-driven mitochondrial biogenesis is detrimental in pressure-overloaded mouse hearts. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H1307-H1316.	1.5	34
30	Mutation in the γ2-Subunit of AMP-Activated Protein Kinase Stimulates Cardiomyocyte Proliferation and Hypertrophy Independent of Glycogen Storage. Circulation Research, 2014, 114, 966-975.	2.0	63
31	Mitochondrial Complex I Deficiency Increases Protein Acetylation and Accelerates Heart Failure. Cell Metabolism, 2013, 18, 239-250.	7.2	376
32	2-deoxy-ATP Alters Myosin Structure to Enhance Cross-Bridge Cycling and Improve Cardiac Function. Biophysical Journal, 2013, 104, 17a.	0.2	3
33	Cardiac Metabolism and its Interactions With Contraction, Growth, and Survival of Cardiomyocytes. Circulation Research, 2013, 113, 603-616.	2.0	591
34	Sample preparation methodology for mouse heart metabolomics using comprehensive two-dimensional gas chromatography coupled with time-of-flight mass spectrometry. Talanta, 2013, 108, 123-130.	2.9	18
35	Transgenic overexpression of ribonucleotide reductase improves cardiac performance. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110, 6187-6192.	3.3	40
36	Cardiac-Specific Deletion of Acetyl CoA Carboxylase 2 Prevents Metabolic Remodeling During Pressure-Overload Hypertrophy. Circulation Research, 2012, 111, 728-738.	2.0	214

STEPHEN C KOLWICZ JR

#	Article	IF	CITATIONS
37	Acute exercise exacerbates ischemia-induced diastolic rigor in hypertensive myocardium. SpringerPlus, 2012, 1, 46.	1.2	10
38	Glucose metabolism and cardiac hypertrophy. Cardiovascular Research, 2011, 90, 194-201.	1.8	241
39	Assessment of Cardiac Function and Energetics in Isolated Mouse Hearts Using ³¹ P NMR Spectroscopy. Journal of Visualized Experiments, 2010, , .	0.2	24
40	Left ventricular remodeling with exercise in hypertension. American Journal of Physiology - Heart and Circulatory Physiology, 2009, 297, H1361-H1368.	1.5	35
41	Metabolic Therapy at the Crossroad: How to Optimize Myocardial Substrate Utilization?. Trends in Cardiovascular Medicine, 2009, 19, 201-207.	2.3	35
42	Voluntary Wheel Running and Pacing-Induced Dysfunction in Hypertension. Clinical and Experimental Hypertension, 2008, 30, 565-573.	0.5	10
43	Effects of forskolin on inotropic performance and phospholamban phosphorylation in exercise-trained hypertensive myocardium. Journal of Applied Physiology, 2007, 102, 628-633.	1.2	14