
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2952355/publications.pdf Version: 2024-02-01

Διβερτ Ιμμλς7

#	Article	IF	CITATIONS
1	Bioremediation of high molecular weight polycyclic aromatic hydrocarbons: a review of the microbial degradation of benzo[a]pyrene. International Biodeterioration and Biodegradation, 2000, 45, 57-88.	3.9	877
2	In VivoAssessment of Arsenic Bioavailability in Rice and Its Significance for Human Health Risk Assessment. Environmental Health Perspectives, 2006, 114, 1826-1831.	6.0	226
3	A critical review of approaches and limitations of inhalation bioavailability and bioaccessibility of metal(loid)s from ambient particulate matter or dust. Science of the Total Environment, 2017, 574, 1054-1074.	8.0	171
4	Assessment of Four Commonly Employed in Vitro Arsenic Bioaccessibility Assays for Predicting in Vivo Relative Arsenic Bioavailability in Contaminated Soils. Environmental Science & Technology, 2009, 43, 9487-9494.	10.0	157
5	Degradation of fluoranthene, pyrene, benz[a]anthracene and dibenz[a , h]anthracene by Burkholderia cepacia. Journal of Applied Microbiology, 1997, 83, 189-198.	3.1	148
6	Soils contaminated with explosives: Environmental fate and evaluation of state-of-the-art remediation processes (IUPAC Technical Report). Pure and Applied Chemistry, 2011, 83, 1407-1484.	1.9	143
7	Biochar increases arsenic release from an anaerobic paddy soil due to enhanced microbial reduction of iron and arsenic. Environmental Pollution, 2017, 220, 514-522.	7.5	143
8	Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003. Letters in Applied Microbiology, 2000, 30, 396-401.	2.2	139
9	Comparison of in vivo and in vitro methodologies for the assessment of arsenic bioavailability in contaminated soils. Chemosphere, 2007, 69, 961-966.	8.2	136
10	In vitro assessment of arsenic bioaccessibility in contaminated (anthropogenic and geogenic) soils. Chemosphere, 2007, 69, 69-78.	8.2	117
11	Evaluation of SBRC-Gastric and SBRC-Intestinal Methods for the Prediction of In Vivo Relative Lead Bioavailability in Contaminated Soils. Environmental Science & Technology, 2009, 43, 4503-4509.	10.0	113
12	Chromium-Microorganism Interactions in Soils: Remediation Implications. Reviews of Environmental Contamination and Toxicology, 2003, 178, 93-164.	1.3	106
13	In Vivo–in Vitro and XANES Spectroscopy Assessments of Lead Bioavailability in Contaminated Periurban Soils. Environmental Science & Technology, 2011, 45, 6145-6152.	10.0	104
14	Assessing the bioavailability and bioaccessibility of metals and metalloids. Environmental Science and Pollution Research, 2015, 22, 8802-8825.	5.3	104
15	Determination of Cadmium Relative Bioavailability in Contaminated Soils and Its Prediction Using in Vitro Methodologies. Environmental Science & Technology, 2010, 44, 5240-5247.	10.0	99
16	Assessment of <i>in Vitro</i> Lead Bioaccessibility in House Dust and Its Relationship to <i>in Vivo</i> Lead Relative Bioavailability. Environmental Science & Technology, 2014, 48, 8548-8555.	10.0	97
17	Assessment of Persistent Organic Pollutant (POP) Bioavailability and Bioaccessibility for Human Health Exposure Assessment: A Critical Review. Critical Reviews in Environmental Science and Technology, 2011, 41, 623-656.	12.8	84
18	Arsenic uptake and speciation in rice plants grown under greenhouse conditions with arsenic contaminated irrigation water. Science of the Total Environment, 2008, 392, 277-283.	8.0	83

#	Article	IF	CITATIONS
19	Impact of soil particle size and bioaccessibility on children and adult lead exposure in peri-urban contaminated soils. Journal of Hazardous Materials, 2011, 186, 1870-1879.	12.4	82
20	Arsenic, lead, and cadmium bioaccessibility in contaminated soils: Measurements and validations. Critical Reviews in Environmental Science and Technology, 2020, 50, 1303-1338.	12.8	82
21	Variability Associated with As in Vivo–in Vitro Correlations When Using Different Bioaccessibility Methodologies. Environmental Science & Technology, 2014, 48, 11646-11653.	10.0	69
22	Oral Bioavailability of As, Pb, and Cd in Contaminated Soils, Dust, and Foods based on Animal Bioassays: A Review. Environmental Science & Technology, 2019, 53, 10545-10559.	10.0	67
23	Applying Cadmium Relative Bioavailability to Assess Dietary Intake from Rice to Predict Cadmium Urinary Excretion in Nonsmokers. Environmental Science & Technology, 2017, 51, 6756-6764.	10.0	60
24	The impact of sequestration on the bioaccessibility of arsenic in long-term contaminated soils. Chemosphere, 2008, 71, 773-780.	8.2	59
25	Effect of soil ageing on in vivo arsenic bioavailability in two dissimilar soils. Chemosphere, 2008, 71, 2180-2186.	8.2	59
26	In vivo measurement, in vitro estimation and fugacity prediction of PAH bioavailability in post-remediated creosote-contaminated soil. Science of the Total Environment, 2014, 473-474, 147-154.	8.0	58
27	Inhalation bioaccessibility of PAHs in PM2.5: Implications for risk assessment and toxicity prediction. Science of the Total Environment, 2019, 650, 56-64.	8.0	58
28	Localization and speciation of arsenic and trace elements in rice tissues. Chemosphere, 2009, 76, 529-535.	8.2	57
29	Validation of the Predictive Capabilities of the Sbrc-G in Vitro Assay for Estimating Arsenic Relative Bioavailability in Contaminated Soils. Environmental Science & Technology, 2014, 48, 12962-12969.	10.0	56
30	In Situ Formation of Pyromorphite Is Not Required for the Reduction of in Vivo Pb Relative Bioavailability in Contaminated Soils. Environmental Science & Technology, 2014, 48, 7002-7009.	10.0	56
31	Advances in inÂvitro methods to evaluate oral bioaccessibility of PAHs and PBDEs in environmental matrices. Chemosphere, 2016, 150, 378-389.	8.2	56
32	Arsenic Relative Bioavailability in Rice Using a Mouse Arsenic Urinary Excretion Bioassay and Its Application to Assess Human Health Risk. Environmental Science & Technology, 2017, 51, 4689-4696.	10.0	56
33	Degradation of high molecular weight polycyclic aromatic hydrocarbons by Pseudomonas cepacia. Biotechnology Letters, 1996, 18, 577-582.	2.2	55
34	In Vivo Bioavailability and In Vitro Bioaccessibility of Perfluorooctanoic Acid (PFOA) in Food Matrices: Correlation Analysis and Method Development. Environmental Science & Technology, 2015, 49, 150-158.	10.0	55
35	Arsenic Relative Bioavailability in Contaminated Soils: Comparison of Animal Models, Dosing Schemes, and Biological End Points. Environmental Science & Technology, 2016, 50, 453-461.	10.0	55
36	Explosives: Fate, Dynamics, and Ecological Impact in Terrestrial and Marine Environments. Reviews of Environmental Contamination and Toxicology, 2007, 191, 163-215.	1.3	55

#	Article	IF	CITATIONS
37	Arsenic uptake and speciation in vegetables grown under greenhouse conditions. Environmental Geochemistry and Health, 2009, 31, 125-132.	3.4	53
38	Assessment of five bioaccessibility assays for predicting the efficacy of petroleum hydrocarbon biodegradation in aged contaminated soils. Chemosphere, 2010, 81, 1061-1068.	8.2	52
39	Methodological factors influencing inhalation bioaccessibility of metal(loid)s in PM2.5 using simulated lung fluid. Environmental Pollution, 2018, 241, 930-937.	7.5	51
40	Influence of in vitro assay pH and extractant composition on As bioaccessibility in contaminated soils. Science of the Total Environment, 2014, 473-474, 171-177.	8.0	50
41	Assessment of lead bioaccessibility in peri-urban contaminated soils. Journal of Hazardous Materials, 2011, 186, 300-305.	12.4	49
42	An inhalation-ingestion bioaccessibility assay (IIBA) for the assessment of exposure to metal(loid)s in PM10. Science of the Total Environment, 2018, 631-632, 92-104.	8.0	48
43	Predicting the Relative Bioavailability of DDT and Its Metabolites in Historically Contaminated Soils Using a Tenax-Improved Physiologically Based Extraction Test (TI-PBET). Environmental Science & Technology, 2016, 50, 1118-1125.	10.0	46
44	Bioaccessibility and human health risk assessment of metal(loid)s in soil from an e-waste open burning site in Agbogbloshie, Accra, Ghana. Chemosphere, 2020, 240, 124909.	8.2	46
45	Principles and application of an in vivo swine assay for the determination of arsenic bioavailability in contaminated matrices. Environmental Geochemistry and Health, 2009, 31, 167-177.	3.4	45
46	In vivo and in vitro methods for evaluating soil arsenic bioavailability: relevant to human health risk assessment. Journal of Toxicology and Environmental Health - Part B: Critical Reviews, 2018, 21, 83-114.	6.5	45
47	Insights into the fate of antimony (Sb) in contaminated soils: Ageing influence on Sb mobility, bioavailability, bioaccessibility and speciation. Science of the Total Environment, 2021, 770, 145354.	8.0	45
48	Application of an in vivo swine model for the determination of arsenic bioavailability in contaminated vegetables. Chemosphere, 2008, 71, 1963-1969.	8.2	43
49	Independent Data Validation of an in Vitro Method for the Prediction of the Relative Bioavailability of Arsenic in Contaminated Soils. Environmental Science & Technology, 2015, 49, 6312-6318.	10.0	43
50	Comparison of indigenous and exogenous microbial populations during slurry phase biodegradation of long-term hydrocarbon-contaminated soil. Biodegradation, 2012, 23, 813-822.	3.0	41
51	Impact of bacterial and fungal processes on 14C-hexadecane mineralisation in weathered hydrocarbon contaminated soil. Science of the Total Environment, 2012, 414, 585-591.	8.0	41
52	Correlation of in Vivo Relative Bioavailability to in Vitro Bioaccessibility for Arsenic in Household Dust from China and Its Implication for Human Exposure Assessment. Environmental Science & Technology, 2014, 48, 13652-13659.	10.0	41
53	Response of soil microbes after direct contact with pyraclostrobin in fluvo-aquic soil. Environmental Pollution, 2019, 255, 113164.	7.5	41
54	Toxicity Evaluation of Three Imidazolium-based ionic liquids ([C6mim]R) on Vicia faba Seedlings Using an integrated biomarker response (IBR) index. Chemosphere, 2020, 240, 124919.	8.2	41

#	Article	IF	CITATIONS
55	Desorption of DDT from a Contaminated Soil using Cosolvent and Surfactant Washing in Batch Experiments. Water, Air, and Soil Pollution, 2004, 151, 71-86.	2.4	40
56	Influence of saliva, gastric and intestinal phases on the prediction of As relative bioavailability using the Unified Bioaccessibility Research Group of Europe Method (UBM). Journal of Hazardous Materials, 2011, 197, 161-168.	12.4	40
57	Childhood Lead Exposure in an Industrial Town in China: Coupling Stable Isotope Ratios with Bioaccessible Lead. Environmental Science & Technology, 2015, 49, 5080-5087.	10.0	40
58	Coupling bioavailability and stable isotope ratio to discern dietary and non-dietary contribution of metal exposure to residents in mining-impacted areas. Environment International, 2018, 120, 563-571.	10.0	40
59	Assessment of DDT Relative Bioavailability and Bioaccessibility in Historically Contaminated Soils Using an in Vivo Mouse Model and Fed and Unfed Batch in Vitro Assays. Environmental Science & Technology, 2012, 46, 2928-2934.	10.0	39
60	Predicting Arsenic Relative Bioavailability Using Multiple in Vitro Assays: Validation of in Vivo–in Vitro Correlations. Environmental Science & Technology, 2015, 49, 11167-11175.	10.0	39
61	Mineral Dietary Supplement To Decrease Cadmium Relative Bioavailability in Rice Based on a Mouse Bioassay. Environmental Science & Technology, 2017, 51, 12123-12130.	10.0	39
62	Metabolite repression inhibits degradation of benzo[a]pyrene and dibenz[a,h]anthracene by Stenotrophomonas maltophilia VUN 10,003. Journal of Industrial Microbiology and Biotechnology, 2002, 28, 88-96.	3.0	38
63	Arsenic distribution and bioaccessibility across particle fractions in historically contaminated soils. Environmental Geochemistry and Health, 2009, 31, 85-92.	3.4	38
64	<i>In Vitro</i> , <i>in Vivo,</i> and Spectroscopic Assessment of Lead Exposure Reduction via Ingestion and Inhalation Pathways Using Phosphate and Iron Amendments. Environmental Science & Technology, 2019, 53, 10329-10341.	10.0	38
65	Bioavailability of residual polycyclic aromatic hydrocarbons following enhanced natural attenuation of creosote-contaminated soil. Environmental Pollution, 2010, 158, 585-591.	7.5	36
66	Using In Vivo Bioavailability and/or In Vitro Gastrointestinal Bioaccessibility Testing to Adjust Human Exposure to Arsenic from Soil Ingestion. Reviews in Mineralogy and Geochemistry, 2014, 79, 451-472.	4.8	36
67	Comparison of arsenic bioaccessibility in housedust and contaminated soils based on four in vitro assays. Science of the Total Environment, 2015, 532, 803-811.	8.0	36
68	Predicting oral relative bioavailability of arsenic in soil from in vitro bioaccessibility. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2016, 79, 165-173.	2.3	36
69	Using in vitro bioaccessibility to refine estimates of human exposure to PAHs via incidental soil ingestion. Environmental Research, 2016, 145, 145-153.	7.5	36
70	<i>In Situ</i> Fixation of Metal(loid)s in Contaminated Soils: A Comparison of Conventional, Opportunistic, and Engineered Soil Amendments. Environmental Science & Technology, 2015, 49, 13501-13509.	10.0	35
71	Using the SBRC Assay to Predict Lead Relative Bioavailability in Urban Soils: Contaminant Source and Correlation Model. Environmental Science & Technology, 2016, 50, 4989-4996.	10.0	34
72	Predicting lead relative bioavailability in peri-urban contaminated soils using <i>in vitro</i> bioaccessibility assays. Journal of Environmental Science and Health - Part A Toxic/Hazardous Substances and Environmental Engineering, 2013, 48, 604-611.	1.7	33

#	Article	IF	CITATIONS
73	Acute toxicity, oxidative stress and DNA damage of chlorpyrifos to earthworms (Eisenia fetida): The difference between artificial and natural soils. Chemosphere, 2020, 255, 126982.	8.2	33
74	Chapter 3 Bioavailability: Definition, assessment and implications for risk assessment. Developments in Soil Science, 2008, , 39-51.	0.5	32
75	Evaluation of the toxicity of 1-butyl-3-methyl imidazolium tetrafluoroborate using earthworms (Eisenia fetida) in two soils. Science of the Total Environment, 2019, 686, 946-958.	8.0	32
76	Microbial activity and phospholipid fatty acid pattern in long-term tannery waste-contaminated soil. Ecotoxicology and Environmental Safety, 2003, 56, 302-310.	6.0	31
77	Predictive Capabilities of in Vitro Assays for Estimating Pb Relative Bioavailability in Phosphate Amended Soils. Environmental Science & Technology, 2016, 50, 13086-13094.	10.0	31
78	Oxidative stress and genotoxic effects in earthworms induced by five imidazolium bromide ionic liquids with different alkyl chains. Chemosphere, 2019, 227, 570-579.	8.2	31
79	Application of native plants in constructed floating wetlands as a passive remediation approach for PFAS-impacted surface water. Journal of Hazardous Materials, 2022, 429, 128326.	12.4	31
80	Degradation of High Molecular Weight PAHs in Contaminated Soil by a Bacterial Consortium: Effects on Microtox and Mutagenicity Bioassays. Bioremediation Journal, 2000, 4, 271-283.	2.0	30
81	Assessment of arsenic speciation and bioaccessibility in mine-impacted materials. Journal of Hazardous Materials, 2016, 313, 130-137.	12.4	30
82	Arsenic Concentrations, Speciation, and Localization in 141 Cultivated Market Mushrooms: Implications for Arsenic Exposure to Humans. Environmental Science & Technology, 2019, 53, 503-511.	10.0	30
83	Health-related toxicity of emerging per- and polyfluoroalkyl substances: Comparison to legacy PFOS and PFOA. Environmental Research, 2022, 212, 113431.	7.5	30
84	Influence of co-contaminant exposure on the absorption of arsenic, cadmium and lead. Chemosphere, 2017, 168, 658-666.	8.2	29
85	Relationship between Pb relative bioavailability and bioaccessibility in phosphate amended soil: Uncertainty associated with predicting Pb immobilization efficacy using in vitro assays. Environment International, 2019, 131, 104967.	10.0	29
86	Dynamics of Lead Bioavailability and Speciation in Indoor Dust and X-ray Spectroscopic Investigation of the Link between Ingestion and Inhalation Pathways. Environmental Science & Technology, 2019, 53, 11486-11495.	10.0	29
87	Applying fungicide on earthworms: Biochemical effects of Eisenia fetida exposed to fluoxastrobin in three natural soils. Environmental Pollution, 2020, 258, 113666.	7.5	29
88	Antagonistic effects of cadmium on lead accumulation in pregnant and non-pregnant mice. Journal of Hazardous Materials, 2012, 199-200, 453-456.	12.4	28
89	Arsanilic acid contributes more to total arsenic than roxarsone in chicken meat from Chinese markets. Journal of Hazardous Materials, 2020, 383, 121178.	12.4	28
90	Predicting the Efficacy of Polycyclic Aromatic Hydrocarbon Bioremediation in Creosote-Contaminated Soil Using Bioavailability Assays. Bioremediation Journal, 2005, 9, 99-114.	2.0	27

#	Article	IF	CITATIONS
91	Assessing Limitations for PAH Biodegradation in Long-Term Contaminated Soils Using Bioaccessibility Assays. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	27
92	Lead Relative Bioavailability in Lip Products and Their Potential Health Risk to Women. Environmental Science & Technology, 2016, 50, 6036-6043.	10.0	27
93	What is required for the validation of inÂvitro assays for predicting contaminant relative bioavailability? Considerations and criteria. Environmental Pollution, 2013, 180, 372-375.	7.5	26
94	Antibiotic exposure decreases soil arsenic oral bioavailability in mice by disrupting ileal microbiota and metabolic profile. Environment International, 2021, 151, 106444.	10.0	26
95	Degradation of benzo[]pyrene, dibenz[]anthracene and coronene by. Water Science and Technology, 1997, 36, 45.	2.5	25
96	Carrier mounted bacterial consortium facilitates oil remediation in the marine environment. Bioresource Technology, 2013, 134, 107-116.	9.6	25
97	Predicting PAH bioremediation efficacy using bioaccessibility assessment tools: Validation of PAH biodegradation–bioaccessibility correlations. International Biodeterioration and Biodegradation, 2014, 95, 320-329.	3.9	24
98	Microbial Degradation of Phenanthrene in Pristine and Contaminated Sandy Soils. Microbial Ecology, 2018, 75, 888-902.	2.8	24
99	Enrichment and isolation of non-specific aromatic degraders from unique uncontaminated (plant and) Tj ETQq1	1 0,78431 3.1	L4 rgBT /Ove
100	Lead relative bioavailability in soils based on different endpoints of a mouse model. Journal of Hazardous Materials, 2017, 326, 94-100.	12.4	23
101	Food influence on lead relative bioavailability in contaminated soils: Mechanisms and health implications. Journal of Hazardous Materials, 2018, 358, 427-433.	12.4	23
102	Toxicity Issues Associated with Geogenic Arsenic in the Groundwater?Soil?Plant?Human Continuum. Bulletin of Environmental Contamination and Toxicology, 2003, 71, 1100-7.	2.7	22
103	Chapter 1 Chemical bioavailability in terrestrial environments. Developments in Soil Science, 2008, 32, 1-6.	0.5	21
104	Influence of sample matrix on the bioavailability of arsenic, cadmium and lead during co-contaminant exposure. Science of the Total Environment, 2017, 595, 660-665.	8.0	21
105	A polyphasic approach for assessing the suitability of bioremediation for the treatment of hydrocarbon-impacted soil. Science of the Total Environment, 2013, 450-451, 51-58.	8.0	20
106	The Influence of Food on the <i>In Vivo</i> Bioavailability of DDT and Its Metabolites in Soil. Environmental Science & Technology, 2020, 54, 5003-5010.	10.0	20
107	Degradation of benzo[a]pyrene, dibenz[a,h]anthracene and coronene by burkholderia cepacia. Water Science and Technology, 1997, 36, 45-51.	2.5	19
108	Ecotoxicity of neutral red (dye) and its environmental applications. Ecotoxicology and Environmental Safety, 2015, 122, 186-192.	6.0	18

#	Article	IF	CITATIONS
109	Antagonistic Interactions between Arsenic, Lead, and Cadmium in the Mouse Gastrointestinal Tract and Their Influences on Metal Relative Bioavailability in Contaminated Soils. Environmental Science & Technology, 2019, 53, 14264-14272.	10.0	18
110	Plumbojarosite formation in contaminated soil to mitigate childhood exposure to lead, arsenic and antimony. Journal of Hazardous Materials, 2021, 418, 126312.	12.4	18
111	Predicting Arsenic Relative Bioavailability in Contaminated Soils Using Meta Analysis and Relative Bioavailability–Bioaccessibility Regression Models. Environmental Science & Technology, 2011, 45, 10676-10683.	10.0	17
112	Oral relative bioavailability of Dichlorodiphenyltrichloroethane (DDT) in contaminated soil and its prediction using in vitro strategies for exposure refinement. Environmental Research, 2016, 150, 482-488.	7.5	17
113	Pilot Scale Bioremediation of Creosote-Contaminated Soil—Efficacy of Enhanced Natural Attenuation and Bioaugmentation Strategies. Bioremediation Journal, 2005, 9, 139-154.	2.0	16
114	Potential impact of soil microbial heterogeneity on the persistence of hydrocarbons in contaminated subsurface soils. Journal of Environmental Management, 2014, 136, 27-36.	7.8	16
115	Oxidative stress and DNA damage induced by trifloxystrobin on earthworms (Eisenia fetida) in two soils. Science of the Total Environment, 2021, 797, 149004.	8.0	16
116	Analysis of microbial hydrocarbon degradation using TLC-FID. Journal of Microbiological Methods, 1995, 22, 119-130.	1.6	15
117	Bioaccessibility-based predictions for estimating PAH biodegradation efficacy – Comparison of model predictions and measured endpoints. International Biodeterioration and Biodegradation, 2013, 85, 323-330.	3.9	14
118	A Review of Immobilisation-Based Remediation of Per- and Poly-Fluoroalkyl Substances (PFAS) in Soils. Current Pollution Reports, 2021, 7, 524-539.	6.6	14
119	Evaluation of a creosote-based medium for the growth and preparation of a PAH-degrading bacterial community for bioaugmentation. Journal of Industrial Microbiology and Biotechnology, 2000, 24, 277-284.	3.0	13
120	Title is missing!. Water, Air, and Soil Pollution, 2003, 147, 263-274.	2.4	13
121	Plumbojarosite Remediation of Soil Affects Lead Speciation and Elemental Interactions in Soil and in Mice Tissues. Environmental Science & Technology, 2021, 55, 15950-15960.	10.0	13
122	Can inÂvitro assays account for interactions between inorganic co-contaminants observed during inÂvivo relative bioavailability assessment?. Environmental Pollution, 2018, 233, 348-355.	7.5	12
123	Apparent degradation of 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) by a Cladosporium sp Biotechnology Letters, 1999, 21, 991-995.	2.2	11
124	Modified clays alter diversity and respiration profile of microorganisms in longâ€ŧerm hydrocarbon and metal coâ€contaminated soil. Microbial Biotechnology, 2020, 13, 522-534.	4.2	11
125	Geogenic nickel exposure from food consumption and soil ingestion: A bioavailability based assessment. Environmental Pollution, 2020, 265, 114873.	7.5	11
126	Correlation between lead speciation and inhalation bioaccessibility using two different simulated lung fluids. Environmental Pollution, 2020, 263, 114609.	7.5	11

#	Article	IF	CITATIONS
127	Extraction and recovery of organochlorine pesticides from fungal mycelia. Journal of Microbiological Methods, 2000, 39, 149-158.	1.6	10
128	Environmental metabolites of fluoroquinolones: synthesis, fractionation and toxicological assessment of some biologically active metabolites of ciprofloxacin. Environmental Science and Pollution Research, 2012, 19, 2697-2707.	5.3	10
129	Assessing impediments to hydrocarbon biodegradation in weathered contaminated soils. Journal of Hazardous Materials, 2013, 261, 847-853.	12.4	10
130	The application of a carrier-based bioremediation strategy for marine oil spills. Marine Pollution Bulletin, 2014, 84, 339-346.	5.0	10
131	Comparison of mouse and swine bioassays for determination of soil arsenic relative bioavailability. Applied Geochemistry, 2018, 88, 221-225.	3.0	10
132	Response of the fungal community to chronic petrogenic contamination in surface and subsurface soils. Geoderma, 2019, 338, 206-215.	5.1	10
133	Influence of household smoking habits on inhalation bioaccessibility of trace elements and light rare earth elements in Canadian house dust. Environmental Pollution, 2020, 262, 114132.	7.5	10
134	Leaching and <i>In Vivo</i> Bioavailability of Antimony in PET Bottled Beverages. Environmental Science & Technology, 2021, 55, 15227-15235.	10.0	10
135	Application of soil amendments for reducing PFAS leachability and bioavailability. Environmental Pollution, 2022, 307, 119498.	7.5	10
136	A radio-isotopic dilution technique for functional characterisation of the associations between inorganic contaminants and water-dispersible naturally occurring soil colloids. Environmental Chemistry, 2013, 10, 341.	1.5	9
137	Metals in paints on chopsticks: Solubilization in simulated saliva, gastric, and food solutions and implication for human health. Environmental Research, 2018, 167, 299-306.	7.5	8
138	Cadmium oral bioavailability is affected by calcium and phytate contents in food: Evidence from leafy vegetables in mice. Journal of Hazardous Materials, 2022, 424, 127373.	12.4	8
139	Title is missing!. Water, Air, and Soil Pollution, 2003, 146, 111-126.	2.4	7
140	Isolation and Identification of Pyrene Mineralizing <i>Mycobacterium</i> spp. from Contaminated and Uncontaminated Sources. Applied and Environmental Soil Science, 2011, 2011, 1-11.	1.7	7
141	Detection of antibacterial-like activity on a silica surface: fluoroquinolones and their environmental metabolites. Environmental Science and Pollution Research, 2012, 19, 2795-2801.	5.3	7
142	Intra- and Interlaboratory Evaluation of an Assay of Soil Arsenic Relative Bioavailability in Mice. Journal of Agricultural and Food Chemistry, 2020, 68, 2615-2622.	5.2	7
143	Advancing prediction of polycyclic aromatic hydrocarbon bioaccumulation in plants for historically contaminated soils using Lolium multiflorum and simple chemical in-vitro methodologies. Science of the Total Environment, 2021, 772, 144783.	8.0	7
144	Brominated flame retardants—safety at what cost?. Lancet, The, 2007, 370, 1813-1814.	13.7	6

#	Article	IF	CITATIONS
145	Chemical Bioavailability in the Terrestrial Environment – recent advances. Journal of Hazardous Materials, 2013, 261, 685-686.	12.4	6
146	An interlaboratory evaluation of the variability in arsenic and lead relative bioavailability when assessed using a mouse bioassay. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2021, 84, 593-607.	2.3	6
147	Characterising the exchangeability of phenanthrene associated with naturally occurring soil colloids using an isotopic dilution technique. Environmental Pollution, 2015, 199, 244-252.	7.5	5
148	Relating soil geochemical properties to arsenic bioaccessibility through hierarchical modeling. Journal of Toxicology and Environmental Health - Part A: Current Issues, 2018, 81, 160-172.	2.3	5
149	Influence of Dietary Lipid Type on the Bioavailability of DDT and Its Metabolites in Soil: Mechanisms and Health Implications. Environmental Science & Technology, 2022, 56, 5102-5110.	10.0	5
150	Title is missing!. Water, Air and Soil Pollution, 2003, 3, 233-242.	0.8	4
151	A Comparison of In-vitro PAH Bioaccessibility in Historically Contaminated Soils: Implications for Risk Management. Soil and Sediment Contamination, 2021, 30, 901-923.	1.9	3
152	Modelling polycyclic aromatic hydrocarbon bioavailability in historically contaminated soils with six in-vitro chemical extractions and three earthworm ecotypes. Science of the Total Environment, 2022, 845, 157265.	8.0	3
153	Chapter 23 Can bioavailability assays predict the efficacy of PAH bioremediation?. Developments in Soil Science, 2008, 32, 569-587.	0.5	2
154	Bioavailability and biodegradation of polycyclic aromatic hydrocarbons. Microbiology Australia, 2014, 35, 199.	0.4	2
155	9. Using In Vivo Bioavailability and/or In Vitro Gastrointestinal Bioaccessibility Testing to Adjust Human Exposure to Arsenic from Soil Ingestion. , 2014, , 451-472.		2
156	Bioaccessibility of Arsenic and Lead in Polluted Soils Using Three In-vitro Gastrointestinal Simulation Models. IOP Conference Series: Earth and Environmental Science, 2019, 265, 012012.	0.3	1
157	Degradative Potential of Microorganisms from DDT-Contaminated Soils. , 2001, , 105-115.		1
158	Evaluation of high molecular weight PAH degradation by a pyrene-enriched microbial community in in inoculated soils. , 1997, , 475-487.		1
159	Arsenic relative bioavailability in contaminated soils: comparison of animal models, dosing schemes, and biological endpoints. , 2019, , 171-172.		1
160	Remediation of Site Contamination. Water, Air, and Soil Pollution, 2013, 224, 1.	2.4	0
161	Biosorption of organochlorine pesticides using fungal biomass. Journal of Industrial Microbiology and Biotechnology, 2002, 29, 163-169.	3.0	0