
Miguel A Lanaspa

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2951785/publications.pdf Version: 2024-02-01

MICHEL A LANASDA

#	Article	IF	CITATIONS
1	Climate change and nephrology. Nephrology Dialysis Transplantation, 2023, 38, 41-48.	0.7	21
2	The Role of Uric Acid in the Acute Myocardial Infarction: A Narrative Review. Angiology, 2022, 73, 9-17.	1.8	11
3	Primary aldosteronism: A consequence of sugar and western Diet?. Medical Hypotheses, 2022, 160, 110796.	1.5	2
4	Kv1.5 channel mediates monosodium urate-induced activation of NLRP3 inflammasome in macrophages and arrhythmogenic effects of urate on cardiomyocytes. Molecular Biology Reports, 2022, 49, 5939-5952.	2.3	3
5	Sirtuin deficiency and the adverse effects of fructose and uric acid synthesis. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2022, 322, R347-R359.	1.8	4
6	Aminoaciduria and metabolic dysregulation during diabetic ketoacidosis: Results from the diabetic kidney alarm (DKA) study. Journal of Diabetes and Its Complications, 2022, 36, 108203.	2.3	4
7	Current Hydration Habits: The Disregarded Factor for the Development of Renal and Cardiometabolic Diseases. Nutrients, 2022, 14, 2070.	4.1	5
8	Pulmonary surfactants and the respiratory-renal connection in steroid-sensitive nephrotic syndrome of childhood. IScience, 2022, 25, 104694.	4.1	2
9	Fructose and uric acid as drivers of a hyperactive foraging response: A clue to behavioral disorders associated with impulsivity or mania?. Evolution and Human Behavior, 2021, 42, 194-203.	2.2	12
10	Lean NAFLD: an underrecognized and challenging disorder in medicine. Reviews in Endocrine and Metabolic Disorders, 2021, 22, 351-366.	5.7	40
11	Vasopressin mediates fructose-induced metabolic syndrome by activating the V1b receptor. JCI Insight, 2021, 6, .	5.0	32
12	Osthol Ameliorates Kidney Damage and Metabolic Syndrome Induced by a High-Fat/High-Sugar Diet. International Journal of Molecular Sciences, 2021, 22, 2431.	4.1	12
13	Hyperuricemia and chronic kidney disease: to treat or not to treat. Jornal Brasileiro De Nefrologia: Orgao Oficial De Sociedades Brasileira E Latino-Americana De Nefrologia, 2021, 43, 572-579.	0.9	16
14	Endogenous Fructose Metabolism Could Explain the Warburg Effect and the Protection of SGLT2 Inhibitors in Chronic Kidney Disease. Frontiers in Immunology, 2021, 12, 694457.	4.8	17
15	The Speed of Ingestion of a Sugary Beverage Has an Effect on the Acute Metabolic Response to Fructose. Nutrients, 2021, 13, 1916.	4.1	12
16	The role of thrifty genes in the origin of alcoholism: A narrative review and hypothesis. Alcoholism: Clinical and Experimental Research, 2021, 45, 1519-1526.	2.4	2
17	A Novel Treatment for Glomerular Disease: Targeting the Activated Macrophage Folate Receptor with a Trojan Horse Therapy in Rats. Cells, 2021, 10, 2113.	4.1	2
18	Tubular injury in diabetic ketoacidosis: Results from the diabetic kidney alarm study. Pediatric Diabetes, 2021, 22, 1031-1039.	2.9	6

#	Article	IF	CITATIONS
19	Umami-induced obesity and metabolic syndrome is mediated by nucleotide degradation and uric acid generation. Nature Metabolism, 2021, 3, 1189-1201.	11.9	33
20	Brief report: The uricase mutation in humans increases our risk for cancer growth. Cancer & Metabolism, 2021, 9, 32.	5.0	9
21	Mini Review: Reappraisal of Uric Acid in Chronic Kidney Disease. American Journal of Nephrology, 2021, 52, 837-844.	3.1	16
22	Fructose tolerance test in obese people with and without type 2 diabetes. Journal of Diabetes, 2020, 12, 197-204.	1.8	5
23	Fructose contributes to the Warburg effect for cancer growth. Cancer & Metabolism, 2020, 8, 16.	5.0	76
24	Cerebral Fructose Metabolism as a Potential Mechanism Driving Alzheimer's Disease. Frontiers in Aging Neuroscience, 2020, 12, 560865.	3.4	38
25	Hyperosmolarity and Increased Serum Sodium Concentration Are Risks for Developing Hypertension Regardless of Salt Intake: A Five-Year Cohort Study in Japan. Nutrients, 2020, 12, 1422.	4.1	12
26	Osmotic Nephrosis and Acute Kidney Injury Associated With SGLT2 Inhibitor Use: A Case Report. American Journal of Kidney Diseases, 2020, 76, 144-147.	1.9	21
27	Sugar causes obesity and metabolic syndrome in mice independently of sweet taste. American Journal of Physiology - Endocrinology and Metabolism, 2020, 319, E276-E290.	3.5	15
28	Deletion of Fructokinase in the Liver or in the Intestine Reveals Differential Effects on Sugar-Induced Metabolic Dysfunction. Cell Metabolism, 2020, 32, 117-127.e3.	16.2	70
29	Uric acid and hypertension. Hypertension Research, 2020, 43, 832-834.	2.7	58
30	Uric Acid and Hypertension: An Update With Recommendations. American Journal of Hypertension, 2020, 33, 583-594.	2.0	104
31	Fructose and hepatic insulin resistance. Critical Reviews in Clinical Laboratory Sciences, 2020, 57, 308-322.	6.1	122
32	Serum osmolarity as a potential predictor for contrast-induced nephropathy following elective coronary angiography. International Urology and Nephrology, 2020, 52, 541-547.	1.4	3
33	Reply to â€ [~] The case for evidence-based medicine for the association between hyperuricaemia and CKD'. Nature Reviews Nephrology, 2020, 16, 422-423.	9.6	2
34	Fructose Production and Metabolism in the Kidney. Journal of the American Society of Nephrology: JASN, 2020, 31, 898-906.	6.1	50
35	The Optimal Range of Serum Uric Acid for Cardiometabolic Diseases: A 5-Year Japanese Cohort Study. Journal of Clinical Medicine, 2020, 9, 942.	2.4	36
36	Hyperuricemia in Kidney Disease: A Major Risk Factor for Cardiovascular Events, Vascular Calcification, and Renal Damage. Seminars in Nephrology, 2020, 40, 574-585.	1.6	43

#	Article	IF	CITATIONS
37	Increase of core temperature affected the progression of kidney injury by repeated heat stress exposure. American Journal of Physiology - Renal Physiology, 2019, 317, F1111-F1121.	2.7	46
38	Obesity causes renal mitochondrial dysfunction and energy imbalance and accelerates chronic kidney disease in mice. American Journal of Physiology - Renal Physiology, 2019, 317, F941-F948.	2.7	32
39	Elevated copeptin, arterial stiffness, and elevated albumin excretion in adolescents with type 1 diabetes. Pediatric Diabetes, 2019, 20, 1110-1117.	2.9	10
40	The case for uric acid-lowering treatment in patients with hyperuricaemia and CKD. Nature Reviews Nephrology, 2019, 15, 767-775.	9.6	122
41	Fructose increases the activity of sodium hydrogen exchanger in renal proximal tubules that is dependent on ketohexokinase. Journal of Nutritional Biochemistry, 2019, 71, 54-62.	4.2	14
42	Allopurinol Prevents the Lipogenic Response Induced by an Acute Oral Fructose Challenge in Short-Term Fructose Fed Rats. Biomolecules, 2019, 9, 601.	4.0	13
43	The consequences of increased 4E-BP1 in polycystic kidney disease. Human Molecular Genetics, 2019, 28, 4132-4147.	2.9	11
44	Antidiuretic Hormone and Serum Osmolarity Physiology and Related Outcomes: What Is Old, What Is New, and What Is Unknown?. Journal of Clinical Endocrinology and Metabolism, 2019, 104, 5406-5420.	3.6	27
45	Fasting blood glucose is predictive of hypertension in a general Japanese population. Journal of Hypertension, 2019, 37, 167-174.	0.5	42
46	The effects of fruit consumption in patients with hyperuricaemia or gout. Rheumatology, 2019, 58, 1133-1141.	1.9	42
47	Are Liquid Sugars Different from Solid Sugar in Their Ability to Cause Metabolic Syndrome?. Obesity, 2019, 27, 879-887.	3.0	60
48	Endogenous fructose production. Current Opinion in Clinical Nutrition and Metabolic Care, 2019, 22, 289-294.	2.5	27
49	Multilayered Interplay Between Fructose and Salt in Development of Hypertension. Hypertension, 2019, 73, 265-272.	2.7	18
50	Uric acid activates aldose reductase and the polyol pathway for endogenous fructose and fat production causing development of fatty liver in rats. Journal of Biological Chemistry, 2019, 294, 4272-4281.	3.4	78
51	The role of autoimmune reactivity induced by heat shock protein 70 in the pathogenesis of essential hypertension. British Journal of Pharmacology, 2019, 176, 1829-1838.	5.4	25
52	High salt intake causes leptin resistance and obesity in mice by stimulating endogenous fructose production and metabolism. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 3138-3143.	7.1	183
53	Urinary CD80: a biomarker for a favorable response to corticosteroids in minimal change disease. Pediatric Nephrology, 2018, 33, 1101-1103.	1.7	6
54	Hyperuricemia, Acute and Chronic Kidney Disease, Hypertension, and Cardiovascular Disease: Report of a Scientific Workshop Organized by the National Kidney Foundation. American Journal of Kidney Diseases, 2018, 71, 851-865.	1.9	362

#	Article	IF	CITATIONS
55	Fructose and sugar: A major mediator of non-alcoholic fatty liver disease. Journal of Hepatology, 2018, 68, 1063-1075.	3.7	617
56	Uric Acid as a Cause of the Metabolic Syndrome. Contributions To Nephrology, 2018, 192, 88-102.	1.1	108
57	Novel treatment strategies for chronic kidney disease: insights from the animal kingdom. Nature Reviews Nephrology, 2018, 14, 265-284.	9.6	78
58	Lacking ketohexokinase-A exacerbates renal injury in streptozotocin-induced diabetic mice. Metabolism: Clinical and Experimental, 2018, 85, 161-170.	3.4	19
59	Elevated serum uric acid increases risks for developing high LDL cholesterol and hypertriglyceridemia: A five-year cohort study in Japan. International Journal of Cardiology, 2018, 261, 183-188.	1.7	95
60	Uric Acid Is a Strong Risk Marker for Developing Hypertension From Prehypertension. Hypertension, 2018, 71, 78-86.	2.7	159
61	Acute effects of salt on blood pressure are mediated by serum osmolality. Journal of Clinical Hypertension, 2018, 20, 1447-1454.	2.0	27
62	Experimental heat stress nephropathy and liver injury are improved by allopurinol. American Journal of Physiology - Renal Physiology, 2018, 315, F726-F733.	2.7	36
63	Rehydration with fructose worsens dehydration-induced renal damage. BMC Nephrology, 2018, 19, 180.	1.8	12
64	Upregulation of CD80 on glomerular podocytes plays an important role in development of proteinuria following pig-to-baboon xeno-renal transplantation - an experimental study. Transplant International, 2018, 31, 1164-1177.	1.6	29
65	Increased Serum Uric Acid over five years is a Risk Factor for Developing Fatty Liver. Scientific Reports, 2018, 8, 11735.	3.3	31
66	Different Risk for Hypertension, Diabetes, Dyslipidemia, and Hyperuricemia According to Level of Body Mass Index in Japanese and American Subjects. Nutrients, 2018, 10, 1011.	4.1	113
67	Ketohexokinase C blockade ameliorates fructose-induced metabolic dysfunction in fructose-sensitive mice. Journal of Clinical Investigation, 2018, 128, 2226-2238.	8.2	89
68	Serum Uric Acid and Risk for Acute Kidney Injury Following Contrast. Angiology, 2017, 68, 132-144.	1.8	38
69	Protective role of fructokinase blockade in the pathogenesis of acute kidney injury in mice. Nature Communications, 2017, 8, 14181.	12.8	75
70	Dietary and commercialized fructose: Sweet or sour?. International Urology and Nephrology, 2017, 49, 1611-1620.	1.4	25
71	Asymptomatic Hyperuricemia Without Comorbidities Predicts Cardiometabolic Diseases. Hypertension, 2017, 69, 1036-1044.	2.7	160
72	Perspective: A Historical and Scientific Perspective of Sugar and Its Relation with Obesity and Diabetes. Advances in Nutrition, 2017, 8, 412-422.	6.4	112

#	Article	IF	CITATIONS
73	Effects of exogenous desmopressin on a model of heat stress nephropathy in mice. American Journal of Physiology - Renal Physiology, 2017, 312, F418-F426.	2.7	31
74	Elevated Serum Uric Acid Level Predicts Rapid Decline in Kidney Function. American Journal of Nephrology, 2017, 45, 330-337.	3.1	57
75	"Metabolically Healthy―Obesity and Hyperuricemia Increase Risk for Hypertension and Diabetes: 5â€year Japanese Cohort Study. Obesity, 2017, 25, 1997-2008.	3.0	53
76	Xenotransplantation: Where Are We with Potential Kidney Recipients? Recent Progress and Potential Future Clinical Trials. Current Transplantation Reports, 2017, 4, 101-109.	2.0	7
77	Serum uric acid and acute kidney injury: A mini review. Journal of Advanced Research, 2017, 8, 529-536.	9.5	93
78	Increased Serum Sodium and Serum Osmolarity Are Independent Risk Factors for Developing Chronic Kidney Disease; 5 Year Cohort Study. PLoS ONE, 2017, 12, e0169137.	2.5	49
79	Angiopoietin-like-4 and minimal change disease. PLoS ONE, 2017, 12, e0176198.	2.5	18
80	Bioactivity-Guided Identification of Botanical Inhibitors of Ketohexokinase. PLoS ONE, 2016, 11, e0157458.	2.5	14
81	Aging-associated renal disease in mice is fructokinase dependent. American Journal of Physiology - Renal Physiology, 2016, 311, F722-F730.	2.7	30
82	Rehydration with soft drink-like beverages exacerbates dehydration and worsens dehydration-associated renal injury. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2016, 311, R57-R65.	1.8	68
83	Elevated copeptin is associated with atherosclerosis and diabetic kidney disease in adults with type 1 diabetes. Journal of Diabetes and Its Complications, 2016, 30, 1093-1096.	2.3	34
84	Climate Change and the Emergent Epidemic of CKD from Heat Stress in Rural Communities: The Case for Heat Stress Nephropathy. Clinical Journal of the American Society of Nephrology: CJASN, 2016, 11, 1472-1483.	4.5	284
85	A randomized, placebo-controlled, double-blind study on the effects of (â^')-epicatechin on the triglyceride/HDLc ratio and cardiometabolic profile of subjects with hypertriglyceridemia: Unique in vitro effects. International Journal of Cardiology, 2016, 223, 500-506.	1.7	45
86	Acute kidney injury from SGLT2 inhibitors: potential mechanisms. Nature Reviews Nephrology, 2016, 12, 711-712.	9.6	102
87	Hyponatremia with Persistent Elevated Urinary Fractional Uric Acid Excretion: Evidence for Proximal Tubular Injury?. Kidney and Blood Pressure Research, 2016, 41, 535-544.	2.0	7
88	Metabolic and Kidney Diseases in the Setting of Climate Change, Water Shortage, and Survival Factors. Journal of the American Society of Nephrology: JASN, 2016, 27, 2247-2256.	6.1	64
89	Uric acid in metabolic syndrome: From an innocent bystander to a central player. European Journal of Internal Medicine, 2016, 29, 3-8.	2.2	282
90	Heat Stress Nephropathy From Exercise-Induced Uric Acid Crystalluria: A Perspective on Mesoamerican Nephropathy. American Journal of Kidney Diseases, 2016, 67, 20-30.	1.9	150

#	Article	IF	CITATIONS
91	Opposing Activity Changes in AMP Deaminase and AMP-Activated Protein Kinase in the Hibernating Ground Squirrel. PLoS ONE, 2015, 10, e0123509.	2.5	42
92	Diabetes and Kidney Disease in American Indians: Potential Role of Sugar-Sweetened Beverages. Mayo Clinic Proceedings, 2015, 90, 813-823.	3.0	19
93	Fructose and uric acid in diabetic nephropathy. Diabetologia, 2015, 58, 1993-2002.	6.3	97
94	New Insights on the Risk for Cardiovascular Disease in African Americans. Journal of the American Society of Nephrology: JASN, 2015, 26, 247-257.	6.1	46
95	Causal or Noncausal Relationship of Uric Acid With Diabetes. Diabetes, 2015, 64, 2720-2722.	0.6	36
96	Hispanic Americans living in the United States and their risk for obesity, diabetes and kidney disease: Genetic and environmental considerations. Postgraduate Medicine, 2015, 127, 503-510.	2.0	19
97	The fructose tolerance test in patients with chronic kidney disease and metabolic syndrome in comparison to healthy controls. BMC Nephrology, 2015, 16, 68.	1.8	8
98	Fructokinase activity mediates dehydration-induced renal injury. Kidney International, 2014, 86, 294-302.	5.2	198
99	Uric acidâ€dependent inhibition of AMP kinase induces hepatic glucose production in diabetes and starvation: evolutionary implications of the uricase loss in hominids. FASEB Journal, 2014, 28, 3339-3350.	0.5	145
100	Evolutionary history and metabolic insights of ancient mammalian uricases. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 3763-3768.	7.1	238
101	Hyperosmolarity drives hypertension and CKD—water and salt revisited. Nature Reviews Nephrology, 2014, 10, 415-420.	9.6	57
102	Autoimmunity in the pathogenesis of hypertension. Nature Reviews Nephrology, 2014, 10, 56-62.	9.6	67
103	Endogenous Fructose Production and Fructokinase Activation Mediate Renal Injury in Diabetic Nephropathy. Journal of the American Society of Nephrology: JASN, 2014, 25, 2526-2538.	6.1	127
104	Uric acid suppresses 1 alpha hydroxylase in vitro and in vivo. Metabolism: Clinical and Experimental, 2014, 63, 150-160.	3.4	80
105	Epicatechin Protects against Corticosteroid Induced Hepatic Steatosis. Journal of Steroids & Hormonal Science, 2014, 05, .	0.1	1
106	High-fat and high-sucrose (western) diet induces steatohepatitis that is dependent on fructokinase. Hepatology, 2013, 58, 1632-1643.	7.3	249
107	Endogenous fructose production and metabolism in the liver contributes to the development of metabolic syndrome. Nature Communications, 2013, 4, 2434.	12.8	185
108	Sugar, Uric Acid, and the Etiology of Diabetes and Obesity. Diabetes, 2013, 62, 3307-3315.	0.6	568

#	Article	IF	CITATIONS
109	Uric Acid-Induced Endothelial Dysfunction Is Associated with Mitochondrial Alterations and Decreased Intracellular ATP Concentrations. Nephron Experimental Nephrology, 2013, 121, e71-e78.	2.2	244
110	Umami: The Taste That Drives Purine Intake. Journal of Rheumatology, 2013, 40, 1794-1796.	2.0	24
111	ALDH16A1 is a novel non-catalytic enzyme that may be involved in the etiology of gout via protein–protein interactions with HPRT1. Chemico-Biological Interactions, 2013, 202, 22-31.	4.0	35
112	Redefining metabolic syndrome as a fat storage condition based on studies of comparative physiology. Obesity, 2013, 21, 659-664.	3.0	57
113	Fructokinase, Fructans, Intestinal Permeability, and Metabolic Syndrome: An Equine Connection?. Journal of Equine Veterinary Science, 2013, 33, 120-126.	0.9	43
114	Synergistic effect of uricase blockade plus physiological amounts of fructose-glucose on glomerular hypertension and oxidative stress in rats. American Journal of Physiology - Renal Physiology, 2013, 304, F727-F736.	2.7	57
115	Inorganic Phosphate Modulates the Expression of the NaPi-2a Transporter in thetrans-Golgi Network and the Interaction with PIST in the Proximal Tubule. BioMed Research International, 2013, 2013, 1-9.	1.9	13
116	Toll-like receptor 3 ligand, polyIC, induces proteinuria and glomerular CD80, and increases urinary CD80 in mice. Nephrology Dialysis Transplantation, 2013, 28, 1439-1446.	0.7	52
117	Nicorandil as a novel therapy for advanced diabetic nephropathy in the eNOS-deficient mouse. American Journal of Physiology - Renal Physiology, 2012, 302, F1151-F1160.	2.7	48
118	Epicatechin limits renal injury by mitochondrial protection in cisplatin nephropathy. American Journal of Physiology - Renal Physiology, 2012, 303, F1264-F1274.	2.7	60
119	Impact of Beverage Content on Health and the Kidneys. Nutrition Today, 2012, 47, S22-S26.	1.0	0
120	Uric Acid Induces Hepatic Steatosis by Generation of Mitochondrial Oxidative Stress. Journal of Biological Chemistry, 2012, 287, 40732-40744.	3.4	558
121	Opposing effects of fructokinase C and A isoforms on fructose-induced metabolic syndrome in mice. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 4320-4325.	7.1	230
122	Toll-like receptor 3 ligands induce CD80 expression in human podocytes via an NF-ÂB-dependent pathway. Nephrology Dialysis Transplantation, 2012, 27, 81-89.	0.7	99
123	Lowering serum uric acid to prevent acute kidney injury. Medical Hypotheses, 2012, 78, 796-799.	1.5	18
124	Effects of Excessive Fructose Intake on Health. Annals of Internal Medicine, 2012, 156, 905.	3.9	7
125	Counteracting Roles of AMP Deaminase and AMP Kinase in the Development of Fatty Liver. PLoS ONE, 2012, 7, e48801.	2.5	159
126	Uric Acid Stimulates Fructokinase and Accelerates Fructose Metabolism in the Development of Fatty Liver. PLoS ONE, 2012, 7, e47948.	2.5	207

#	Article	IF	CITATIONS
127	Uric Acid: A Danger Signal From the RNA World That May Have a Role in the Epidemic of Obesity, Metabolic Syndrome, and Cardiorenal Disease: Evolutionary Considerations. Seminars in Nephrology, 2011, 31, 394-399.	1.6	93
128	Uric Acid and Fructose: Potential Biological Mechanisms. Seminars in Nephrology, 2011, 31, 426-432.	1.6	53
129	Selective Stimulation of VEGFR2 Accelerates Progressive Renal Disease. American Journal of Pathology, 2011, 179, 155-166.	3.8	33
130	Uric acid and Metabolic Syndrome: What is the Relationship?. Current Rheumatology Reviews, 2011, 7, 162-169.	0.8	14
131	Sucrose induces fatty liver and pancreatic inflammation in male breeder rats independent of excess energy intake. Metabolism: Clinical and Experimental, 2011, 60, 1259-1270.	3.4	141
132	The effect of two energy-restricted diets, a low-fructose diet versus a moderate natural fructose diet, on weight loss and metabolic syndrome parameters: a randomized controlled trial. Metabolism: Clinical and Experimental, 2011, 60, 1551-1559.	3.4	105
133	Attention-Deficit/Hyperactivity Disorder: Is it time to Reappraise the Role of Sugar Consumption?. Postgraduate Medicine, 2011, 123, 39-49.	2.0	63
134	The Expression of Aquaporin-1 in the Medulla of the Kidney Is Dependent on the Transcription Factor Associated with Hypertonicity, TonEBP. Journal of Biological Chemistry, 2010, 285, 31694-31703.	3.4	50
135	Effects of 2-Bromoethanamine on TonEBP Expression and Its Possible Role in Induction of Renal Papillary Necrosis in Mice. Toxicological Sciences, 2010, 118, 510-520.	3.1	3
136	Uric Acid in Hypertension and Renal Disease: The Chicken or the Egg. Blood Purification, 2010, 30, 288-295.	1.8	57
137	Could uric acid be a modifiable risk factor in subjects with pulmonary hypertension?. Medical Hypotheses, 2010, 74, 1069-1074.	1.5	21
138	Dietary fructose causes tubulointerstitial injury in the normal rat kidney. American Journal of Physiology - Renal Physiology, 2010, 298, F712-F720.	2.7	144
139	ZAC1 Is Up-regulated by Hypertonicity and Decreases Sorbitol Dehydrogenase Expression, Allowing Accumulation of Sorbitol in Kidney Cells. Journal of Biological Chemistry, 2009, 284, 19974-19981.	3.4	9
140	Hypertonic stress increases claudin-4 expression and tight junction integrity in association with MUPP1 in IMCD3 cells. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 15797-15802.	7.1	44
141	Nucleoporin 88 (Nup88) Is Regulated by Hypertonic Stress in Kidney Cells to Retain the Transcription Factor Tonicity Enhancer-binding Protein (TonEBP) in the Nucleus. Journal of Biological Chemistry, 2008, 283, 25082-25090.	3.4	17
142	The tight junction protein, MUPP1, is up-regulated by hypertonicity and is important in the osmotic stress response in kidney cells. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104, 13672-13677.	7.1	42