
King Kuok Hii

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2951720/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Building Pathways to a Sustainable Planet. ACS Sustainable Chemistry and Engineering, 2022, 10, 1-2.	3.2	1
2	Women in Green Chemistry and Engineering: Agents of Change Toward the Achievement of a Sustainable Future. ACS Sustainable Chemistry and Engineering, 2022, 10, 2859-2862.	3.2	3
3	Importance of Green and Sustainable Chemistry in the Chemical Industry. Organic Process Research and Development, 2022, 26, 2176-2178.	1.3	6
4	Lab to Market: Where the Rubber Meets the Road for Sustainable Chemical Technologies. ACS Sustainable Chemistry and Engineering, 2021, 9, 2987-2989.	3.2	3
5	Shaping Effective Practices for Incorporating Sustainability Assessment in Manuscripts Submitted to <i>ACS Sustainable Chemistry & Engineering</i> : Catalysis and Catalytic Processes. ACS Sustainable Chemistry and Engineering, 2021, 9, 4936-4940.	3.2	34
6	Rapid formation of 2-lithio-1-(triphenylmethyl)imidazole and substitution reactions in flow. Reaction Chemistry and Engineering, 2021, 6, 2018-2023.	1.9	3
7	Expectations for Perspectives in ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2021, 9, 16528-16530.	3.2	1
8	<i>In situ</i> study of metal leaching from Pd/Al ₂ O ₃ induced by K ₂ CO ₃ CO ₃ . Catalysis Science and Technology, 2020, 10, 466-474.	2.1	14
9	The Evolution of ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2020, 8, 1-1.	3.2	6
10	Expectations for Manuscripts in ACS Sustainable Chemistry & Engineering: Scope Summary and Call for Creativity. ACS Sustainable Chemistry and Engineering, 2020, 8, 16046-16047.	3.2	2
11	Remembering Professor, Academician, and Editor Lina Zhang. ACS Sustainable Chemistry and Engineering, 2020, 8, 16385-16385.	3.2	Ο
12	The Changing Structure of Scientific Communication: Expanding the Nature of Letters Submissions to ACS Sustainable Chemistry & Engineering. ACS Sustainable Chemistry and Engineering, 2020, 8, 8469-8470.	3.2	0
13	Revisiting the mechanism of the Fujiwara–Moritani reaction. Reaction Chemistry and Engineering, 2020, 5, 1104-1111.	1.9	10
14	Pd-LaFeO ₃ Catalysts in Aqueous Ethanol: Pd Reduction, Leaching, and Structural Transformations in the Presence of a Base. ACS Catalysis, 2020, 10, 3933-3944.	5.5	6
15	Expectations for Manuscripts on Catalysis in <i>ACS Sustainable Chemistry & Engineering</i> . ACS Sustainable Chemistry and Engineering, 2020, 8, 4995-4996.	3.2	14
16	Introduction to Synthesis 4.0: towards an internet of chemistry. Reaction Chemistry and Engineering, 2019, 4, 1504-1505.	1.9	8
17	Peracetic Acid: An Atom-Economical Reagent for Pd-Catalyzed Acetoxylation of C–H Bonds. ACS Sustainable Chemistry and Engineering, 2019, 7, 1611-1615.	3.2	9
18	Catalysis in Flow: Nickel-Catalyzed Synthesis of Primary Amines from Alcohols and NH ₃ . ACS Sustainable Chemistry and Engineering, 2018, 6, 5479-5484.	3.2	41

#	Article	IF	CITATIONS
19	Continuous Flow Technologies in the Development of "Green―Organic Reactions and Processes. Series on Chemistry, Energy and the Environment, 2018, , 257-284.	0.3	2
20	2â€lodoxybenzoic Acid Synthesis by Oxidation of 2â€lodobenzoic Acid at a Boronâ€Doped Diamond Anode. ChemElectroChem, 2018, 5, 1002-1005.	1.7	17
21	Spatial, temporal and quantitative assessment of catalyst leaching in continuous flow. Catalysis Today, 2018, 308, 64-70.	2.2	32
22	Base-free, tunable, Au-catalyzed oxidative esterification of alcohols in continuous flow. Reaction Chemistry and Engineering, 2018, 3, 942-948.	1.9	2
23	Catalysis in flow: O2 effect on the catalytic activity of Ru(OH)x/Ĵ³-Al2O3 during the aerobic oxidation of an alcohol. Reaction Chemistry and Engineering, 2017, 2, 60-67.	1.9	14
24	Solvent-dependent nuclearity, geometry and catalytic activity of [(SPhos)Pd(Ph)Cl] ₂ . Dalton Transactions, 2017, 46, 7223-7231.	1.6	7
25	Controlled multiphase oxidations for continuous manufacturing of fine chemicals. Chemical Engineering Journal, 2017, 329, 220-230.	6.6	8
26	A colorimetric method for rapid and selective quantification of peroxodisulfate, peroxomonosulfate and hydrogen peroxide. Reaction Chemistry and Engineering, 2017, 2, 462-466.	1.9	34
27	Effects of Cl on the reduction of supported PdO in ethanol/water solvent mixtures. Journal of Lithic Studies, 2017, 3, 54-62.	0.1	4
28	One-step multicomponent synthesis of chiral oxazolinyl-zinc complexes. Chemistry Central Journal, 2017, 11, 81.	2.6	7
29	Effect of retained chlorine in ENCATâ,,¢ 30 catalysts on the development of encapsulated Pd: insights from in situ Pd K, L3 and Cl K-edge XAS. Journal of Lithic Studies, 2017, 3, 149-156.	0.1	5
30	"Goldilocks Effect―of Water in Lewis-BrÃֻnsted Acid and Base Catalysis. ACS Catalysis, 2016, 6, 4189-4194.	5.5	12
31	Aerobic oxidations in flow: opportunities for the fine chemicals and pharmaceuticals industries. Reaction Chemistry and Engineering, 2016, 1, 595-612.	1.9	145
32	Synthesis, Structure and Catalytic Activity of NHC–Ag ^I Carboxylate Complexes. Chemistry - A European Journal, 2016, 22, 13320-13327.	1.7	31
33	Synthesis of Isoindolinones by Pd-Catalyzed Coupling between <i>N</i> -Methoxybenzamide and Styrene Derivatives. Journal of Organic Chemistry, 2016, 81, 7931-7938.	1.7	41
34	Restructuring of supported Pd by green solvents: an operando quick EXAFS (QEXAFS) study and implications for the derivation of structure–function relationships in Pd catalysis. Catalysis Science and Technology, 2016, 6, 8525-8531.	2.1	8
35	Operando XAFS of supported Pd nanoparticles in flowing ethanol/water mixtures: implications for catalysis. Green Chemistry, 2016, 18, 406-411.	4.6	26
36	Silverâ€Catalyzed Cyclization of Propargylic Amides to Oxazolines. Advanced Synthesis and Catalysis, 2015, 357, 3943-3948.	2.1	26

Кілс Киок Ніі

#	Article	IF	CITATIONS
37	Ligand Effect and Control of <i>E</i> ―and <i>Z</i> â€Selectivity in the Silverâ€Catalyzed Synthesis of 4ã€Bromooxazolines. Advanced Synthesis and Catalysis, 2015, 357, 2485-2491.	2.1	12
38	Asymmetric Epoxidation: A Twinned Laboratory and Molecular Modeling Experiment for Upper-Level Organic Chemistry Students. Journal of Chemical Education, 2015, 92, 1385-1389.	1.1	13
39	Catalysis in Flow: Why Leaching Matters. Topics in Organometallic Chemistry, 2015, , 249-262.	0.7	7
40	Structure and bonding of [(SIPr)AgX] (X = Cl, Br, I and OTf). Chemical Communications, 2015, 51, 17752-17755.	2.2	22
41	Chemo―and Diastereoselectivities in the Electrochemical Reduction of Maleimides. ChemSusChem, 2015, 8, 665-671.	3.6	3
42	Electronic structures of cyclometalated palladium complexes in the higher oxidation states. Dalton Transactions, 2015, 44, 16586-16591.	1.6	17
43	Atropisomeric [(diphosphine)Au ₂ Cl ₂] Complexes and their Catalytic Activity Towards Asymmetric Cycloisomerisation of 1,6â€Enynes. Chemistry - A European Journal, 2015, 21, 2686-2690.	1.7	24
44	1. Catalysis in flow. , 2014, , 3-30.		1
45	Catalysis in flow: Operando study of Pd catalyst speciation and leaching. Catalysis Today, 2014, 229, 95-103.	2.2	52
46	Coinage Metal Catalysts for the Addition of O–H to C=C Bonds. European Journal of Organic Chemistry, 2013, 2013, 1027-1039.	1.2	44
47	Silver-catalysed intramolecular hydroamination of alkynes with trichloroacetimidates. Chemical Communications, 2013, 49, 9272.	2.2	44
48	Levonantradol: asymmetric synthesis and structural analysis. Chemical Communications, 2013, 49, 3685.	2.2	17
49	New Chiral Zwitterionic Phosphorus Heterocycles: Synthesis, Structure, Properties and Application as Chiral Solvating Agents. Chemistry - A European Journal, 2013, 19, 8136-8143.	1.7	11
50	Methyleneâ€Bridged Bis(imidazoline)â€Derived 2â€Oxopyrimidinium Salts as Catalysts for Asymmetric Michael Reactions. Angewandte Chemie - International Edition, 2013, 52, 6988-6991.	7.2	47
51	Deconvolution of the Mechanism of Homogeneous Gold-Catalyzed Reactions. Organometallics, 2012, 31, 2395-2402.	1.1	31
52	Catalysis in flow: Au-catalysed alkylation of amines by alcohols. Green Chemistry, 2012, 14, 226-232.	4.6	59
53	Gold(I) Complexes of Conformationally Constricted Chiral Ferrocenyl Phosphines. Organometallics, 2012, 31, 3745-3754.	1.1	26
54	Speciation of Pd(OAc) ₂ in ligandless Suzuki–Miyaura reactions. Catalysis Science and Technology, 2012, 2, 316-323.	2.1	86

#	Article	IF	CITATIONS
55	Preparation of dicationic palladium catalysts for asymmetric catalytic reactions. Nature Protocols, 2012, 7, 1765-1773.	5.5	13
56	Asymmetric synthesis of 2-alkyl-substituted tetrahydroquinolines by an enantioselective aza-Michael reaction. Organic and Biomolecular Chemistry, 2012, 10, 4424.	1.5	36
57	Silverâ€Catalysed Enantioselective Addition of OH and NH Bonds to Allenes: A New Model for Stereoselectivity Based on Noncovalent Interactions. Chemistry - A European Journal, 2012, 18, 11317-11324.	1.7	54
58	Alternative to Benzoquinone for Room-Temperature Fujiwara–Moritani Reactions. Journal of Organic Chemistry, 2011, 76, 8022-8026.	1.7	39
59	Transition Metal Catalyzed Enantioselective α-Heterofunctionalization of Carbonyl Compounds. Chemical Reviews, 2011, 111, 1637-1656.	23.0	333
60	An Expedient Synthesis of Olfactory Lactones by Intramolecular Hydroacylalkoxylation Reactions. European Journal of Organic Chemistry, 2011, 2011, 1852-1857.	1.2	6
61	Delineating Origins of Stereocontrol in Asymmetric Pd-Catalyzed α-Hydroxylation of 1,3-Ketoesters. Journal of Organic Chemistry, 2010, 75, 3085-3096.	1.7	92
62	Oxidative Amidation of Activated Alkenes Using Pd(OAc) ₂ as a Catalyst Precursor. European Journal of Organic Chemistry, 2010, 2010, 5181-5189.	1.2	30
63	Catalysis in flow: the practical and selective aerobic oxidation of alcohols to aldehydes and ketones. Green Chemistry, 2010, 12, 2157.	4.6	73
64	Hydroamination reactions by metal triflates: BrÃ,nsted acid vs. metal catalysis?. Dalton Transactions, 2010, 39, 1171-1175.	1.6	95
65	Synthesis of Terphenyls. Organic Preparations and Procedures International, 2009, 41, 331-358.	0.6	21
66	Delineating ligand effects in intramolecular aryl amidation reactions: formation of a novel spiro-heterocycle by a tandem cyclisation process. Tetrahedron, 2009, 65, 525-530.	1.0	18
67	Copper-catalysed intramolecular O–H addition to unactivated alkenes. Tetrahedron, 2009, 65, 10334-10338.	1.0	47
68	[Pd{2-CH2-5-MeC6H3C(H)NNC(S)NHEt}]3: An unprecedented trinuclear cyclometallated palladium(II) cluster through induced flexibility in the metallated ring. Journal of Organometallic Chemistry, 2009, 694, 747-751.	0.8	11
69	Unusual regiodivergence in metal-catalysed intramolecular cyclisation of γ-allenols. Chemical Communications, 2009, , 7125-7127.	2.2	39
70	Palladium-catalysed enantioselective α-hydroxylation of β-ketoesters. Chemical Communications, 2009, , 3925.	2.2	89
71	A recyclable copper(ii) catalyst for the annulation of phenols with 1,3-dienes. Chemical Communications, 2008, , 2325.	2.2	53
72	A Concise Asymmetric Synthesis of Torcetrapib. Journal of Organic Chemistry, 2007, 72, 6290-6293.	1.7	42

#	Article	IF	CITATIONS
73	Applications of phosphine-functionalised polymers in organic synthesis. Chemical Society Reviews, 2007, 36, 608-617.	18.7	96
74	A Practical and General Synthesis of Unsymmetrical Terphenyls. Journal of Organic Chemistry, 2007, 72, 7771-7774.	1.7	78
75	Elucidating the Mechanism of the Asymmetric Aza-Michael Reaction. Chemistry - A European Journal, 2007, 13, 4602-4613.	1.7	47
76	Preparation of macrocyclon analogues: calix[8]arenes with extended polyethylene glycol chains. Tetrahedron, 2007, 63, 9947-9959.	1.0	25
77	In situ investigation of the oxidative addition in homogeneous Pd catalysts by synchronised time resolved UV-Vis/EXAFS. Chemical Communications, 2006, , 4306.	2.2	39
78	Ligand Effects in the Synthesis ofN-Heterocycles by Intramolecular Heck Reactions. Journal of Organic Chemistry, 2006, 71, 1732-1735.	1.7	33
79	Practical Synthesis of Chiral Vinylphosphine Oxides by Direct Nucleophilic Substitution. Stereodivergent Synthesis of Aminophosphine Ligands. Journal of Organic Chemistry, 2006, 71, 2472-2479.	1.7	66
80	Copper-Catalyzed Intermolecular Hydroamination of Alkenes. Organic Letters, 2006, 8, 3561-3564.	2.4	140
81	Mechanisms That Interchange Axial and Equatorial Atoms in Fluxional Processes: Illustration of the Berry Pseudorotation, the Turnstile, and the Lever Mechanisms via Animation of Transition State Normal Vibrational Modes. Journal of Chemical Education, 2006, 83, 336.	1.1	31
82	Development of palladium catalysts for asymmetric hydroamination reactions. Pure and Applied Chemistry, 2006, 78, 341-349.	0.9	67
83	Enabling Ligand Screening for Palladium-Catalysed Enantioselective Aza-Michael Addition Reactions. Advanced Synthesis and Catalysis, 2006, 348, 587-592.	2.1	53
84	Phosphine-functionalised polymer resins as Pd scavengers. Tetrahedron Letters, 2005, 46, 6911-6913.	0.7	24
85	Recyclable polymer-supported Pd catalysts for aryl amination reactions. Tetrahedron Letters, 2005, 46, 7363-7366.	0.7	18
86	Synthesis of P-chirogenic diarylphosphinoacetic acids and their proline derivatives for palladium-catalysed allylic alkylation reactions. Tetrahedron Letters, 2005, 46, 8145-8148.	0.7	18
87	Enantioselective addition of amines to alkenoyl-N-oxazolidinones. Tetrahedron, 2005, 61, 6237-6242.	1.0	33
88	Reversal of aryl bromide reactivity in Pd-catalysed aryl amination reactions promoted by a hemilabile aminophosphine ligand. Tetrahedron, 2005, 61, 9822-9826.	1.0	21
89	Palladium-Catalysed Enantioselective Conjugate Addition of Aromatic Amines to α,β-UnsaturatedN-Imides. Effect of the Chelating Moiety. Advanced Synthesis and Catalysis, 2005, 347, 1775-1780.	2.1	30
90	Conformation Analyses, Dynamic Behavior and Amide Bond Distortions of Medium-Sized Heterocycles. Part 1. Partially and Fully Reduced 1-Benzazepines ChemInform, 2005, 36, no.	0.1	0

Кілс Киок Ніі

#	Article	IF	CITATIONS
91	Enantioselective Addition of Amines to Alkenoyl-N-oxazolidinones ChemInform, 2005, 36, no.	0.1	Ο
92	Conformation Analyses, Dynamic Behavior and Amide Bond Distortions of Medium-sized Heterocycles. 1. Partially and Fully Reduced 1-Benzazepines. Journal of Organic Chemistry, 2005, 70, 1545-1551.	1.7	74
93	Copper(ii)-catalysed addition of O–H bonds to norbornene. Chemical Communications, 2005, , 5103.	2.2	51
94	Conformation Analyses, Dynamic Behavior, and Amide Bond Distortions of Medium-sized Heterocycles. 2. Partially and Fully Reduced 1-Benzazocines, Benzazonines, and Benzazecines. Journal of Organic Chemistry, 2005, 70, 1552-1557.	1.7	42
95	Polymer-supported manganese porphyrin catalysts—peptide-linker promoted chemoselectivity. Organic and Biomolecular Chemistry, 2005, 3, 1971.	1.5	19
96	Wang-aldehyde resin as a recyclable support for the synthesis of α,α-disubstituted amino acid derivatives. Organic and Biomolecular Chemistry, 2005, 3, 3188.	1.5	6
97	Multigram Synthesis of Well-Defined Extended Bifunctional Polyethylene Glycol (PEG) Chains. Journal of Organic Chemistry, 2004, 69, 639-647.	1.7	84
98	Chemoselective epoxidation of dienes using polymer-supported manganese porphyrin catalysts. Tetrahedron, 2004, 60, 5913-5918.	1.0	54
99	Aminohydroxy phosphine oxide ligands in ruthenium-catalysed asymmetric transfer hydrogenation reactions. Tetrahedron: Asymmetry, 2004, 15, 2241-2246.	1.8	20
100	Conformationally Restricted Arene Intermediates in the Intermolecular Heck Arylation of Vinylarenes. Advanced Synthesis and Catalysis, 2004, 346, 983-988.	2.1	8
101	Asymmetric Synthesis ofβ-Amino Acid and Amide Derivatives by Catalytic Conjugate Addition of Aromatic Amines toN-Alkenoylcarbamates. European Journal of Organic Chemistry, 2004, 2004, 959-964.	1.2	59
102	Mixed Donor Aminophosphine Oxide Ligands in Ruthenium-Catalyzed Asymmetric Transfer Hydrogenation Reactions ChemInform, 2004, 35, no.	0.1	0
103	Chemoselective Epoxidation of Dienes Using Polymer-Supported Manganese Porphyrin Catalysts ChemInform, 2004, 35, no.	0.1	0
104	Mixed donor aminophosphine oxide ligands in ruthenium-catalysed asymmetric transfer hydrogenation reactions. Tetrahedron: Asymmetry, 2004, 15, 1835-1840.	1.8	39
105	Phosphorus–nitrogen–phosphorus ligands: cooperative effects between nitrogen and phosphorus substituents on catalytic activity. Organic and Biomolecular Chemistry, 2004, 2, 301-306.	1.5	8
106	Mild reduction of chlorophosphine boranes to secondary phosphine boranes. Tetrahedron Letters, 2003, 44, 5213-5216.	0.7	4
107	Air- and moisture-stable cationic (diphosphine)palladium(II) complexes as hydroamination catalysts. Journal of Organometallic Chemistry, 2003, 665, 250-257.	0.8	106
108	Unsymmetrical terdentate phosphorus-nitrogen-nitrogen (PNN) ligands: effect of the M/L ratio and the pendant group on stereoselectivity. Tetrahedron: Asymmetry, 2003, 14, 2045-2052.	1.8	8

#	Article	IF	CITATIONS
109	Dicationic [(BINAP)Pd(solvent)2]2+[TfO–]2: enantioselective hydroamination catalyst for alkenoyl-N-oxazolidinones. Chemical Communications, 2003, , 1132-1133.	2.2	71
110	Coordination Chemistry and Catalytic Activity of Ruthenium Complexes of Terdentate Phosphorusâ´`Nitrogenâ´'Phosphorus (PNP) and Bidentate Phosphorusâ´`Nitrogen (PNH) Ligands. Organometallics, 2002, 21, 4927-4933.	1.1	38
111	Profound Steric Control of Reactivity in Aryl Halide Addition to Bisphosphane Palladium(0) Complexes. Angewandte Chemie - International Edition, 2002, 41, 1760-1763.	7.2	152
112	Examining the effect of hemilabile donor groups in non-C2 symmetrical terdentate ligands. Tetrahedron Letters, 2002, 43, 5875-5877.	0.7	15
113	Palladium-catalyzed addition of R 2 NH to double bonds. Synthesis of α-amino tetrahydrofuran and pyran rings. Tetrahedron, 2001, 57, 5445-5450.	1.0	34
114	Advances in the Heck chemistry of aryl bromides and chlorides. Tetrahedron, 2001, 57, 7449-7476.	1.0	579
115	The Chatt-Dewar-Duncanson Model Revisited: X-ray, DFT and NMR Studies of Rhodium-Alkene Binding—Deviations from Structural Ideality. Chemistry - A European Journal, 2000, 6, 4587-4596.	1.7	32
116	Examination of Ligand Effects in the Heck Arylation Reaction. Tetrahedron, 2000, 56, 7975-7979.	1.0	56
117	Scope and Limitations of the Preparation of Aminophosphines R-NH(CH2CH2PPh2) and Aminodiphosphines R-N(CH2CH2PPh2)2 via Michael Addition of Amines to Vinylphosphines. Synthesis, 2000, 2000, 1320-1326.	1.2	25
118	Factors Affecting the Oxidative Addition of Aryl Electrophiles to 1,1â€~-Bis(diphenylphosphino)ferrocenepalladium(η2-methyl acrylate), an Isolable Pd[0] Alkene Complex. Organometallics, 1999, 18, 5367-5374.	1.1	66
119	Syntheses and Properties of Palladium Complexes Containing Phosphorusâ^'Nitrogenâ^'Phosphorus Ligands with a Tunable Hemilabile Site. Organometallics, 1999, 18, 1887-1896.	1.1	59
120	Models for the Carbonyl-ene Cyclization Reaction: Open and Closed Transition States. Angewandte Chemie - International Edition, 1998, 37, 1720-1723.	7.2	29
121	The Heck olefination reaction; A DFT study of the elimination pathway. Tetrahedron Letters, 1998, 39, 3229-3232.	0.7	58
122	Intermediates in the Intermolecular, Asymmetric Heck Arylation of Dihydrofurans. Angewandte Chemie International Edition in English, 1997, 36, 984-987.	4.4	68
123	Characterization of Reactive Intermediates in Palladium-Catalyzed Arylation of Methyl Acrylate(Heck) Tj ETQq1 1	0.784314 4.4	rgBT /Over
124	Terdentate (P,N,N) complexes of a new pyridyl azine phosphine Z,E-PPh2CH2(But)CN–NC(Me)C5H4N and its deprotonated derivative (an azo phosphine) with transition metals. Journal of the Chemical Society Dalton Transactions, 1995, , 625-631.	d 1.1	8
125	Terdentate (P–N–O) complexes formed from Z,E-PPh2CH2C-(But)N–NCH(C6H4OH-2) or Z,E-PPh2CH2C(But)N–NCH-[C6H2(OH-2)(OMe)2-4,6] and nickel, palladium, platinum, rhodium or iridium Journal of the Chemical Society Dalton Transactions, 1994, , 3589-3596.	1. 1.1	15
126	Complexes of the bidentate ligands PPh2CH2C(But)NNR2(R = H or Me) and PPh2CH2C(But)N–NCHPh with palladium and platinum. X-Ray crystal structure of cis-[Pt{PPh2CH2C(But)NNH}2]. Journal of the Chemical Society Dalton Transactions, 1994, , 103-110.	1.1	22

		Кімс Киок Нії		
#	Article	IF	7	Citations
127	New bidentate ligands PPh2CH2C(But)NNR2(R = H or Me) and PPh2CH2C(But)NNCH complexes with Group 6 metal carbonyls. Journal of the Chemical Society Dalton Transactions, 2361-2366.	Ph and their 1992, , 1	.1	29

128 Hydridopalladium Complexes. , 0, , 81-90.