Mikael Kll

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2951715/mikael-kall-publications-by-year.pdf

Version: 2024-04-20

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

67 19,381 136 234 h-index g-index citations papers 21,656 6.75 248 7.4 L-index avg, IF ext. papers ext. citations

#	Paper	IF	Citations
234	Direction- and Polarization-Resolved Radiation of Coupled Plasmon Modes on Silver Nanowires. <i>Advanced Photonics Research</i> , 2022 , 3, 2100300	1.9	
233	Nanoplasmonic-Nanofluidic Single-Molecule Biosensors for Ultrasmall Sample Volumes. <i>ACS Sensors</i> , 2021 , 6, 73-82	9.2	5
232	Non-equilibrium properties of an active nanoparticle in a harmonic potential. <i>Nature Communications</i> , 2021 , 12, 1902	17.4	2
231	Microscopic metavehicles powered and steered by embedded optical metasurfaces. <i>Nature Nanotechnology</i> , 2021 , 16, 970-974	28.7	8
230	Metasurface Optical Characterization Using Quadriwave Lateral Shearing Interferometry. <i>ACS Photonics</i> , 2021 , 8, 603-613	6.3	7
229	Strong Transient Flows Generated by Thermoplasmonic Bubble Nucleation. ACS Nano, 2020,	16.7	3
228	Large-Scale Metasurfaces Made by an Exposed Resist. <i>ACS Photonics</i> , 2020 , 7, 885-892	6.3	6
227	Selective surface-enhanced Raman scattering detection of Tabun, VX and Cyclosarin nerve agents using 4-pyridine amide oxime functionalized gold nanopillars. <i>Talanta</i> , 2020 , 211, 120721	6.2	10
226	Full optical characterization of single nanoparticles using quantitative phase imaging. <i>Optica</i> , 2020 , 7, 243	8.6	17
225	Optical material anisotropy in high-index transition metal dichalcogenide Mie nanoresonators. <i>Optica</i> , 2020 , 7, 680	8.6	11
224	Circular dichroism mode splitting and bounds to its enhancement with cavity-plasmon-polaritons. <i>Nanophotonics</i> , 2020 , 9, 283-293	6.3	10
223	Nanoscale Inorganic Motors Driven by Light: Principles, Realizations, and Opportunities. <i>Chemical Reviews</i> , 2020 , 120, 269-287	68.1	50
222	Optical Tweezing and Photothermal Properties of Resonant Dielectric and Metallic Nanospheres. <i>ACS Photonics</i> , 2020 , 7, 2405-2412	6.3	3
221	Protein kinase A controls yeast growth in visible light. <i>BMC Biology</i> , 2020 , 18, 168	7.3	9
220	Optical Rotation and Thermometry of Laser Tweezed Silicon Nanorods. <i>Nano Letters</i> , 2020 , 20, 6494-65	O111.5	5
219	Present and Future of Surface-Enhanced Raman Scattering. ACS Nano, 2020, 14, 28-117	16.7	1000
218	Surface Interactions of Gold Nanoparticles Optically Trapped against an Interface. <i>Journal of Physical Chemistry C</i> , 2019 , 123, 16406-16414	3.8	8

(2018-2019)

217	Electromagnetic Energy Distribution in Resonant Quasi Porous Silicon Nanostructures. <i>ACS Photonics</i> , 2019 , 6, 1706-1714	6.3	4
216	Transition metal dichalcogenide nanodisks as high-index dielectric Mie nanoresonators. <i>Nature Nanotechnology</i> , 2019 , 14, 679-683	28.7	112
215	Plasmonic versus All-Dielectric Nanoantennas for Refractometric Sensing: A Direct Comparison. <i>ACS Photonics</i> , 2019 , 6, 1556-1564	6.3	35
214	Fabrication of Monodisperse Colloids of Resonant Spherical Silicon Nanoparticles: Applications in Optical Trapping and Printing. <i>ACS Photonics</i> , 2019 , 6, 2141-2148	6.3	10
213	Ultrafast Modulation of Thermoplasmonic Nanobubbles in Water. <i>Nano Letters</i> , 2019 , 19, 8294-8302	11.5	7
212	Solar harvesting based on perfect absorbing all-dielectric nanoresonators on a mirror. <i>Optics Express</i> , 2019 , 27, A967-A980	3.3	9
211	A Gaussian reflective metasurface for advanced wavefront manipulation. <i>Optics Express</i> , 2019 , 27, 210	69 ₃ 2 ₃ 10	826
210	Photothermal DNA Release from Laser-Tweezed Individual Gold Nanomotors Driven by Photon Angular Momentum. <i>ACS Photonics</i> , 2018 , 5, 2168-2175	6.3	11
209	Large-Scale Fabrication of Shaped High Index Dielectric Nanoparticles on a Substrate and in Solution. <i>Advanced Optical Materials</i> , 2018 , 6, 1701253	8.1	21
208	Light-Driven Rotation of Plasmonic Nanomotors. Advanced Functional Materials, 2018, 28, 1706272	15.6	53
207	Antenna-Enhanced Fluorescence Correlation Spectroscopy Resolves Calcium-Mediated Lipid-Lipid Interactions. <i>ACS Nano</i> , 2018 , 12, 3272-3279	16.7	3
206	Quantum description and emergence of nonlinearities in strongly coupled single-emitter nanoantenna systems. <i>Physical Review B</i> , 2018 , 98,	3.3	23
205	Construction and Operation of a Light-driven Gold Nanorod Rotary Motor System. <i>Journal of Visualized Experiments</i> , 2018 ,	1.6	2
204	Optically controlled stochastic jumps of individual gold nanorod rotary motors. <i>Physical Review B</i> , 2018 , 98,	3.3	9
203	Counter-Propagating Optical Trapping of Resonant Nanoparticles Using a Uniaxial Crystal. <i>Laser and Photonics Reviews</i> , 2018 , 12, 1800139	8.3	3
202	Nanostructured Dielectric Fractals on Resonant Plasmonic Metasurfaces for Selective and Sensitive Optical Sensing of Volatile Compounds. <i>Advanced Materials</i> , 2018 , 30, e1800931	24	38
201	Anapole-Enhanced Intrinsic Raman Scattering from Silicon Nanodisks. ACS Photonics, 2018, 5, 2730-273	36 6.3	50
200	Directional scattering and multipolar contributions to optical forces on silicon nanoparticles in focused laser beams. <i>Optics Express</i> , 2018 , 26, 29074-29085	3.3	16

199	High index dielectric metasurfaces and colloidal solutions: from fabrication to application. <i>Journal of Physics: Conference Series</i> , 2018 , 1092, 012158	0.3	
198	Antibody-Antigen Interaction Dynamics Revealed by Analysis of Single-Molecule Equilibrium Fluctuations on Individual Plasmonic Nanoparticle Biosensors. <i>ACS Nano</i> , 2018 , 12, 9958-9965	16.7	27
197	Photothermal Heating of Plasmonic Nanoantennas: Influence on Trapped Particle Dynamics and Colloid Distribution. <i>ACS Photonics</i> , 2018 , 5, 2878-2887	6.3	48
196	Light-sensing via hydrogen peroxide and a peroxiredoxin. <i>Nature Communications</i> , 2017 , 8, 14791	17.4	44
195	Large-Scale Silicon Nanophotonic Metasurfaces with Polarization Independent Near-Perfect Absorption. <i>Nano Letters</i> , 2017 , 17, 3054-3060	11.5	60
194	Multidimensional Hybridization of Dark Surface Plasmons. <i>ACS Nano</i> , 2017 , 11, 4265-4274	16.7	16
193	FRET enhancement close to gold nanoparticles positioned in DNA origami constructs. <i>Nanoscale</i> , 2017 , 9, 673-683	7.7	46
192	Superior LSPR substrates based on electromagnetic decoupling for on-a-chip high-throughput label-free biosensing. <i>Light: Science and Applications</i> , 2017 , 6, e17042	16.7	45
191	Wavevector-Selective Nonlinear Plasmonic Metasurfaces. <i>Nano Letters</i> , 2017 , 17, 5258-5263	11.5	15
190	Probing Photothermal Effects on Optically Trapped Gold Nanorods by Simultaneous Plasmon Spectroscopy and Brownian Dynamics Analysis. <i>ACS Nano</i> , 2017 , 11, 10053-10061	16.7	24
189	Brownian fluctuations of an optically rotated nanorod. <i>Optica</i> , 2017 , 4, 746	8.6	22
188	Thin-Film Amorphous Silicon Nanopillar Solar Cells: An Investigation of the Optical Potential 2017,		1
187	Metasurfaces and Colloidal Suspensions Composed of 3D Chiral Si Nanoresonators. <i>Advanced Materials</i> , 2017 , 29, 1701352	24	34
186	Hot Electron Generation and Cathodoluminescence Nanoscopy of Chiral Split Ring Resonators. <i>Nano Letters</i> , 2016 , 16, 5183-90	11.5	66
185	Continuous-Gradient Plasmonic Nanostructures Fabricated by Evaporation on a Partially Exposed Rotating Substrate. <i>Advanced Materials</i> , 2016 , 28, 4658-64	24	28
184	Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion. <i>Nanoscale</i> , 2016 , 8, 1305-8	7.7	82
183	Directional Light Extinction and Emission in a Metasurface of Tilted Plasmonic Nanopillars. <i>Nano Letters</i> , 2016 , 16, 98-104	11.5	25
182	Evaluating Conditions for Strong Coupling between Nanoparticle Plasmons and Organic Dyes Using Scattering and Absorption Spectroscopy. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 20588-20596	3.8	47

(2014-2016)

181	Metasurfaces: Continuous-Gradient Plasmonic Nanostructures Fabricated by Evaporation on a Partially Exposed Rotating Substrate (Adv. Mater. 23/2016). <i>Advanced Materials</i> , 2016 , 28, 4756	24	1
180	A Multiscale Approach to Modeling Plasmonic Nanorod Biosensors. <i>Journal of Physical Chemistry C</i> , 2016 , 120, 20692-20701	3.8	12
179	Polarization conversion-based molecular sensing using anisotropic plasmonic metasurfaces. <i>Nanoscale</i> , 2016 , 8, 10576-81	7.7	33
178	Schottky barrier formation and band bending revealed by first- principles calculations. <i>Scientific Reports</i> , 2015 , 5, 11374	4.9	62
177	Realizing Strong Light-Matter Interactions between Single-Nanoparticle Plasmons and Molecular Excitons at Ambient Conditions. <i>Physical Review Letters</i> , 2015 , 114, 157401	7.4	322
176	Explosive and chemical threat detection by surface-enhanced Raman scattering: a review. <i>Analytica Chimica Acta</i> , 2015 , 893, 1-13	6.6	205
175	Dimer-on-mirror SERS substrates with attogram sensitivity fabricated by colloidal lithography. <i>Nanoscale</i> , 2015 , 7, 9405-10	7.7	89
174	Plasmon Enhanced Internal Photoemission in Antenna-Spacer-Mirror Based Au/TiOâll Nanostructures. <i>Nano Letters</i> , 2015 , 15, 4059-65	11.5	100
173	Laser trapping of colloidal metal nanoparticles. ACS Nano, 2015, 9, 3453-69	16.7	154
172	Ultimate Limit of Light Extinction by Nanophotonic Structures. <i>Nano Letters</i> , 2015 , 15, 7633-8	11.5	19
171	Interactions of Bacterial Lipopolysaccharides with Gold Nanorod Surfaces Investigated by Refractometric Sensing. <i>ACS Applied Materials & District Sensing Communication (Communication)</i> Refractometric Sensing. <i>ACS Applied Materials & District Sensing (Communication)</i> 10 (2015) 10 (201	9.5	25
170	Gold Nanorod Rotary Motors Driven by Resonant Light Scattering. ACS Nano, 2015, 9, 12542-51	16.7	82
169	Near-Complete Photon Spin Selectivity in a Metasurface of Anisotropic Plasmonic Antennas. <i>Physical Review X</i> , 2015 , 5,	9.1	8
168	Optical magnetism and plasmonic Fano resonances in metal-insulator-metal oligomers. <i>Nano Letters</i> , 2015 , 15, 1952-8	11.5	79
167	Directional Nanoplasmonic Antennas for Self-Referenced Refractometric Molecular Analysis. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 21075-21080	3.8	20
166	Quasi-isotropic surface plasmon polariton generation through near-field coupling to a penrose pattern of silver nanoparticles. <i>ACS Nano</i> , 2014 , 8, 9286-94	16.7	7
165	Macroscopic Layers of Chiral Plasmonic Nanoparticle Oligomers from Colloidal Lithography. <i>ACS Photonics</i> , 2014 , 1, 1074-1081	6.3	65
164	A thermal plasmonic sensor platform: resistive heating of nanohole arrays. <i>Nano Letters</i> , 2014 , 14, 3544	1-9 1.5	34

163	Refractometric biosensing based on optical phase flips in sparse and short-range-ordered nanoplasmonic layers. <i>Light: Science and Applications</i> , 2014 , 3, e220-e220	16.7	76
162	Plasmonic particles set into fast orbital motion by an optical vortex beam. <i>Optics Express</i> , 2014 , 22, 434	93556	46
161	Nanogaps for SERS applications. MRS Bulletin, 2014, 39, 163-168	3.2	78
160	Toward Plasmonic Biosensors Functionalized by a Photoinduced Surface Reaction. <i>Journal of Physical Chemistry C</i> , 2013 , 117, 14751-14758	3.8	8
159	Mutually synchronized bottom-up multi-nanocontact spin-torque oscillators. <i>Nature Communications</i> , 2013 , 4, 2731	17.4	80
158	Plasmon-enhanced enzyme-linked immunosorbent assay on large arrays of individual particles made by electron beam lithography. <i>ACS Nano</i> , 2013 , 7, 8824-32	16.7	25
157	Ultrafast spinning of gold nanoparticles in water using circularly polarized light. <i>Nano Letters</i> , 2013 , 13, 3129-34	11.5	103
156	Complete light annihilation in an ultrathin layer of gold nanoparticles. <i>Nano Letters</i> , 2013 , 13, 3053-8	11.5	23
155	Approaching the strong coupling limit in single plasmonic nanorods interacting with J-aggregates. <i>Scientific Reports</i> , 2013 , 3, 3074	4.9	181
154	The yeast transcription factor Crz1 is activated by light in a Ca2+/calcineurin-dependent and PKA-independent manner. <i>PLoS ONE</i> , 2013 , 8, e53404	3.7	23
153	Directional scattering and hydrogen sensing by bimetallic Pd-Au nanoantennas. <i>Nano Letters</i> , 2012 , 12, 2464-9	11.5	125
152	Diffraction from arrays of plasmonic nanoparticles with short-range lateral order. <i>ACS Nano</i> , 2012 , 6, 9455-65	16.7	14
151	An Introduction to Plasmonic Refractive Index Sensing 2012 , 1-26		2
150	Optical Tweezers for Raman Spectroscopy 2012 , 507-530		2
149	Fano interference between localized plasmons and interface reflections. ACS Nano, 2012, 6, 7533-9	16.7	42
148	Laser Manipulation of Plasmonic Nanoparticles for SERS and Sensing 2012 , 153-167		
147	A simple model for the resonance shift of localized plasmons due to dielectric particle adhesion. <i>Optics Express</i> , 2012 , 20, 524-33	3.3	24
146	Simulating light scattering from supported plasmonic nanowires. <i>Optics Express</i> , 2012 , 20, 10816-26	3.3	23

(2010-2012)

145	Fano interference in supported gold nanosandwiches with weakly coupled nanodisks. <i>Optics Express</i> , 2012 , 20, 29646-58	3.3	4
144	A combination of concave/convex surfaces for field-enhancement optimization: the indented nanocone. <i>Optics Express</i> , 2012 , 20, 25201-12	3.3	9
143	Plasmon hybridization reveals the interaction between individual colloidal gold nanoparticles confined in an optical potential well. <i>Nano Letters</i> , 2011 , 11, 4505-8	11.5	40
142	Cascaded logic gates in nanophotonic plasmon networks. <i>Nature Communications</i> , 2011 , 2, 387	17.4	337
141	A bimetallic nanoantenna for directional colour routing. <i>Nature Communications</i> , 2011 , 2, 481	17.4	259
140	Optical response of supported gold nanodisks. <i>Optics Express</i> , 2011 , 19, 12093-107	3.3	26
139	Mode-specific directional emission from hybridized particle-on-a-film plasmons. <i>Optics Express</i> , 2011 , 19, 12856-64	3.3	10
138	Plasmon-enhanced colorimetric ELISA with single molecule sensitivity. <i>Nano Letters</i> , 2011 , 11, 1826-30	11.5	152
137	Continuous light exposure causes cumulative stress that affects the localization oscillation dynamics of the transcription factor Msn2p. <i>Biochimica Et Biophysica Acta - Molecular Cell Research</i> , 2011 , 1813, 358-66	4.9	21
136	Unidirectional broadband light emission from supported plasmonic nanowires. <i>Nano Letters</i> , 2011 , 11, 706-11	11.5	186
135	Angular distribution of surface-enhanced Raman scattering from individual au nanoparticle aggregates. <i>ACS Nano</i> , 2011 , 5, 2036-41	16.7	73
134	Symmetry-dependent screening of surface plasmons in ultrathin supported films: The case of Al/Si(111). <i>Physical Review B</i> , 2011 , 83,	3.3	14
133	Coloring fluorescence emission with silver nanowires. <i>Applied Physics Letters</i> , 2010 , 96, 103114	3.4	46
132	Sulfate assimilation mediates tellurite reduction and toxicity in Saccharomyces cerevisiae. <i>Eukaryotic Cell</i> , 2010 , 9, 1635-47		18
131	Optical Forces in Plasmonic Nanoparticle Dimers. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 7472-7479	3.8	69
130	Alignment, rotation, and spinning of single plasmonic nanoparticles and nanowires using polarization dependent optical forces. <i>Nano Letters</i> , 2010 , 10, 268-73	11.5	197
129	Optical manipulation of plasmonic nanoparticles using laser tweezers 2010,		2
128	Hole mask colloidal lithography on magnetic multilayers for spin torque applications. <i>Journal of Physics: Conference Series</i> , 2010 , 200, 072078	0.3	1

127	Investigations on light-induced stress in fluorescence microscopy using nuclear localization of the transcription factor Msn2p as a reporter. <i>FEMS Yeast Research</i> , 2009 , 9, 875-84	3.1	25
126	Unidirectional ultracompact optical nanoantennas. <i>Nano Letters</i> , 2009 , 9, 2343-9	11.5	154
125	Sensitivity enhancement of nanoplasmonic sensors in low refractive index substrates. <i>Optics Express</i> , 2009 , 17, 2015-23	3.3	60
124	Resonant optical absorption in graphite nanostructures. <i>Journal of Optics</i> , 2009 , 11, 114022		10
123	High-resolution microspectroscopy of plasmonic nanostructures for miniaturized biosensing. <i>Analytical Chemistry</i> , 2009 , 81, 6572-80	7.8	71
122	Ultrahigh sensitivity made simple: nanoplasmonic label-free biosensing with an extremely low limit-of-detection for bacterial and cancer diagnostics. <i>Nanotechnology</i> , 2009 , 20, 434015	3.4	126
121	Intrinsic Fano interference of localized plasmons in Pd nanoparticles. <i>Nano Letters</i> , 2009 , 9, 882-6	11.5	85
120	Electron-lattice interactions in the perovskite LaFe0.5Cr0.5O3 characterized by optical spectroscopy and LDA+U calculations. <i>Physical Review B</i> , 2009 , 80,	3.3	12
119	Optical aggregation of metal nanoparticles in a microfluidic channel for surface-enhanced Raman scattering analysis. <i>Lab on A Chip</i> , 2009 , 9, 193-5	7.2	106
118	Refractometric sensing using propagating versus localized surface plasmons: a direct comparison. <i>Nano Letters</i> , 2009 , 9, 4428-33	11.5	275
117	The sodium pump Ena1p provides mechanistic insight into the salt sensitivity of vacuolar protein sorting mutants. <i>Biochimica Et Biophysica Acta - Molecular Cell Research</i> , 2008 , 1783, 974-84	4.9	16
116	Plasmonic Properties of Silver Trimers with Trigonal Symmetry Fabricated by Electron-Beam Lithography. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 14313-14317	3.8	65
115	Electron-phonon interactions in perovskites containing Fe and Cr studied by Raman scattering using oxygen-isotope and cation substitution. <i>Physical Review B</i> , 2008 , 78,	3.3	58
114	GreenB tensor calculations of plasmon resonances of single holes and hole pairs in thin gold films. <i>New Journal of Physics</i> , 2008 , 10, 105004	2.9	24
113	Structural asymmetry and induced optical magnetism in plasmonic nanosandwiches. <i>Journal of the Optical Society of America B: Optical Physics</i> , 2008 , 25, 659	1.7	55
112	Shape effects in the localized surface plasmon resonance of single nanoholes in thin metal films. <i>Optics Express</i> , 2008 , 16, 5609-16	3.3	57
111	Optically controlled interparticle distance tuning and welding of single gold nanoparticle pairs by photochemical metal deposition. <i>Optics Express</i> , 2008 , 16, 12362-71	3.3	44
110	Image analysis algorithms for cell contour recognition in budding yeast. <i>Optics Express</i> , 2008 , 16, 12943	-573	37

109	Enhanced nanoplasmonic optical sensors with reduced substrate effect. <i>Nano Letters</i> , 2008 , 8, 3893-8	11.5	186
108	Optical forces on interacting plasmonic nanoparticles in a focused Gaussian beam. <i>Physical Review B</i> , 2008 , 77,	3.3	36
107	Photochemical Tuning of Plasmon Resonances in Single Gold Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 4920-4924	3.8	30
106	Plasmonic Au/Co/Au nanosandwiches with enhanced magneto-optical activity. <i>Small</i> , 2008 , 4, 202-5	11	199
105	Nanohole Plasmons in Optically Thin Gold Films. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 1207-1212	3.8	136
104	Gold-silica-gold nanosandwiches: tunable bimodal plasmonic resonators. <i>Small</i> , 2007 , 3, 294-9	11	116
103	Optical antennas based on coupled nanoholes in thin metal films. <i>Nature Physics</i> , 2007 , 3, 884-889	16.2	90
102	Long-Range Refractive Index Sensing Using Plasmonic Nanostructures. <i>Journal of Physical Chemistry C</i> , 2007 , 111, 11806-11810	3.8	71
101	Top-down extended meshing algorithm and its applications to Greenß tensor nano-optics calculations. <i>Physical Review E</i> , 2007 , 75, 046702	2.4	4
100	Nanometric control of the distance between plasmonic nanoparticles using optical forces. <i>Optics Express</i> , 2007 , 15, 14914-20	3.3	23
99	Sensing characteristics of NIR localized surface plasmon resonances in gold nanorings for application as ultrasensitive biosensors. <i>Nano Letters</i> , 2007 , 7, 1256-63	11.5	603
98	Franck-Condon higher order lattice excitations in the LaFe1â\(\mathbb{Q}\)CrxO3 (x=0, 0.1, 0.5, 0.9, 1.0) perovskites due to Fe-Cr charge transfer effects. <i>Physical Review B</i> , 2007 , 75,	3.3	44
97	Plasmonic and Diffractive Coupling in 2D Arrays of Nanoparticles produced by Electron Beam Lithography. <i>Materials Research Society Symposia Proceedings</i> , 2006 , 951, 20		2
96	Resonant two-phonon Raman scattering as a probe of hole crystal formation in Sr14â\CaxCu24O41. <i>Physical Review B</i> , 2006 , 74,	3.3	4
95	Resonant coupling between localized plasmons and anisotropic molecular coatings in ellipsoidal metal nanoparticles. <i>Physical Review B</i> , 2006 , 73,	3.3	82
94	Photo-induced transformations in 2,2P5P2PPterthiophene thin films on silver. <i>Physical Chemistry Chemical Physics</i> , 2006 , 8, 1445-50	3.6	10
93	Raman spectroscopic studies of terthiophenes for molecular electronics. <i>Journal of Physical Chemistry B</i> , 2006 , 110, 25671-7	3.4	17
92	Magnetic-field enhancement in gold nanosandwiches. <i>Optics Express</i> , 2006 , 14, 8240-6	3.3	94

91	Creating hot nanoparticle pairs for surface-enhanced Raman spectroscopy through optical manipulation. <i>Nano Letters</i> , 2006 , 6, 2639-41	11.5	221
90	On the importance of optical forces in surface-enhanced Raman scattering (SERS). <i>Faraday Discussions</i> , 2006 , 132, 35-44; discussion 85-94	3.6	40
89	Photoinduced nanodots and pinning effects in Bi2Sr2CaCu2O8+d. <i>Physica C: Superconductivity and Its Applications</i> , 2006 , 445-448, 443-446	1.3	
88	Estimating SERS Properties of Silver-Particle Aggregates through Generalized Mie Theory 2006 , 87-103		18
87	Estimating SERS Properties of Silver-Particle Aggregates through Generalized Mie Theory 2006 , 87-104		
86	Surface-enhanced Raman scattering and fluorescence near metal nanoparticles. <i>Physical Review B</i> , 2005 , 72,	3.3	247
85	A microfluidic system enabling Raman measurements of the oxygenation cycle in single optically trapped red blood cells. <i>Lab on A Chip</i> , 2005 , 5, 431-6	7.2	98
84	Controlling plasmon line shapes through diffractive coupling in linear arrays of cylindrical nanoparticles fabricated by electron beam lithography. <i>Nano Letters</i> , 2005 , 5, 1065-70	11.5	373
83	Confined plasmons in nanofabricated single silver particle pairs: experimental observations of strong interparticle interactions. <i>Journal of Physical Chemistry B</i> , 2005 , 109, 1079-87	3.4	447
82	Localized surface plasmon resonance sensing of lipid-membrane-mediated biorecognition events. Journal of the American Chemical Society, 2005 , 127, 5043-8	16.4	253
81	Plasmons in the metallic nanoparticle-film system as a tunable impurity problem. <i>Nano Letters</i> , 2005 , 5, 2009-13	11.5	140
80	Plasmonic sensing characteristics of single nanometric holes. <i>Nano Letters</i> , 2005 , 5, 2335-9	11.5	218
79	Field enhancement and molecular response in surface-enhanced Raman scattering and fluorescence spectroscopy. <i>Journal of Raman Spectroscopy</i> , 2005 , 36, 510-514	2.3	72
78	Order-disorder-order phase transitions in the pyrochlore superconductor Cd2Re2O7. <i>Physical Review B</i> , 2005 , 71,	3.3	19
77	In situ resonant Raman scattering and reversible photoinduced structural change in YBa2Cu3O6+x. <i>Physical Review B</i> , 2005 , 71,	3.3	5
76	Investigating Narrow Plasmons in Nanoparticle Arrays Fabricated Using Electron Beam Lithography <i>Materials Research Society Symposia Proceedings</i> , 2005 , 872, 1		3
75	Resonance Raman spectroscopy of optically trapped functional erythrocytes. <i>Journal of Biomedical Optics</i> , 2004 , 9, 593-600	3.5	72
74	Light scattering in gold nanorings. <i>Journal of Quantitative Spectroscopy and Radiative Transfer</i> , 2004 , 89, 11-16	2.1	31

(2002-2004)

73	Direct Observation of Heterogeneous Photochemistry on Aggregated Ag Nanocrystals Using Raman Spectroscopy: The Case of Photoinduced Degradation of Aromatic Amino Acids. <i>Journal of Physical Chemistry A</i> , 2004 , 108, 4187-4193	2.8	60
72	Optical Spectroscopy of Nanometric Holes in Thin Gold Films. <i>Nano Letters</i> , 2004 , 4, 1003-1007	11.5	252
71	Unified treatment of fluorescence and raman scattering processes near metal surfaces. <i>Physical Review Letters</i> , 2004 , 93, 243002	7.4	169
70	Optical Spectroscopy of Single Trapped Metal Nanoparticles in Solution. <i>Nano Letters</i> , 2004 , 4, 115-118	11.5	156
69	Resonance Raman study of the oxygenation cycle of optically trapped single red blood cells in a microfluidic system 2004 ,		1
68	Nanoparticle Optics: The Importance of Radiative Dipole Coupling in Two-Dimensional Nanoparticle Arraysâ[] <i>Journal of Physical Chemistry B</i> , 2003 , 107, 7337-7342	3.4	604
67	Optical Properties of Short Range Ordered Arrays of Nanometer Gold Disks Prepared by Colloidal Lithography. <i>Journal of Physical Chemistry B</i> , 2003 , 107, 5768-5772	3.4	295
66	Polarization-dependent surface-enhanced Raman spectroscopy of isolated silver nanoaggregates. <i>ChemPhysChem</i> , 2003 , 4, 1001-5	3.2	160
65	Large-area topography analysis and near-field Raman spectroscopy using bent fibre probes. <i>Journal of Microscopy</i> , 2003 , 210, 269-73	1.9	13
64	Surface-Based Gold-Nanoparticle Sensor for Specific and Quantitative DNA Hybridization Detection. <i>Langmuir</i> , 2003 , 19, 10414-10419	4	93
63		3.3	93
	Detection. <i>Langmuir</i> , 2003 , 19, 10414-10419 Oxygen-ordering superstructures in underdoped YBa2Cu3O6+x studied by hard x-ray diffraction.	3.3	
63	Oxygen-ordering superstructures in underdoped YBa2Cu3O6+x studied by hard x-ray diffraction. <i>Physical Review B</i> , 2003 , 68, Laser-Induced Growth and Deposition of Noble-Metal Nanoparticles for Surface-Enhanced Raman	3.3	64
63 62	Oxygen-ordering superstructures in underdoped YBa2Cu3O6+x studied by hard x-ray diffraction. <i>Physical Review B</i> , 2003 , 68, Laser-Induced Growth and Deposition of Noble-Metal Nanoparticles for Surface-Enhanced Raman Scattering. <i>Nano Letters</i> , 2003 , 3, 593-596	3.3	64 92
63 62 61	Oxygen-ordering superstructures in underdoped YBa2Cu3O6+x studied by hard x-ray diffraction. <i>Physical Review B</i> , 2003 , 68, Laser-Induced Growth and Deposition of Noble-Metal Nanoparticles for Surface-Enhanced Raman Scattering. <i>Nano Letters</i> , 2003 , 3, 593-596 Optical properties of gold nanorings. <i>Physical Review Letters</i> , 2003 , 90, 057401 Importance of substrate and photo-induced effects in Raman spectroscopy of single functional	3.3 11.5 7.4	64 9 ² 84 ²
63 62 61 60	Oxygen-ordering superstructures in underdoped YBa2Cu3O6+x studied by hard x-ray diffraction. Physical Review B, 2003, 68, Laser-Induced Growth and Deposition of Noble-Metal Nanoparticles for Surface-Enhanced Raman Scattering. Nano Letters, 2003, 3, 593-596 Optical properties of gold nanorings. Physical Review Letters, 2003, 90, 057401 Importance of substrate and photo-induced effects in Raman spectroscopy of single functional erythrocytes. Journal of Biomedical Optics, 2003, 8, 173-8	3·3 11.5 7·4 3·5	64 92 842 41
63 62 61 60 59	Oxygen-ordering superstructures in underdoped YBa2Cu3O6+x studied by hard x-ray diffraction. Physical Review B, 2003, 68, Laser-Induced Growth and Deposition of Noble-Metal Nanoparticles for Surface-Enhanced Raman Scattering. Nano Letters, 2003, 3, 593-596 Optical properties of gold nanorings. Physical Review Letters, 2003, 90, 057401 Importance of substrate and photo-induced effects in Raman spectroscopy of single functional erythrocytes. Journal of Biomedical Optics, 2003, 8, 173-8 Laser-induced growth of Ag nanoparticles from aqueous solutions. ChemPhysChem, 2002, 3, 116-9 Modeling the optical response of nanoparticle-based surface plasmon resonance sensors. Sensors	3.3 11.5 7.4 3.5	64 92 842 41 56

55	Single-Molecule Surface-Enhanced Raman and Fluorescence Correlation Spectroscopy of Horseradish Peroxidase. <i>Journal of Physical Chemistry B</i> , 2002 , 106, 1213-1218	3.4	120
54	Charge redistribution in YBa2Cu3O7âd probed by Raman spectroscopy: CuO2-plane phonon as a probe of carrier dynamics in the CuO2 plane. <i>Applied Physics Letters</i> , 2002 , 81, 4988-4990	3.4	1
53	Surface-plasmon-enhanced optical forces in silver nanoaggregates. <i>Physical Review Letters</i> , 2002 , 89, 246802	7.4	394
52	Interparticle coupling effects in surface-enhanced Raman scattering 2001,		30
51	Pressure-induced effects in high-Tc superconductors: Raman scattering as a probe of charge-lattice dynamics under high pressure. <i>Physica C: Superconductivity and Its Applications</i> , 2001 , 357-360, 142-145	1.3	5
50	Photoinduced effects and oxygen dynamics in YBa2Cu3Ox. <i>Physica C: Superconductivity and Its Applications</i> , 2001 , 364-365, 545-548	1.3	2
49	Multivariate evaluation of doxorubicin surface-enhanced Raman spectra. <i>Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy</i> , 2001 , 57, 1907-15	4.4	39
48	Feasibility of quantitative determination of doxorubicin with surface-enhanced Raman spectroscopy. <i>Journal of Raman Spectroscopy</i> , 2001 , 32, 971-974	2.3	35
47	Interparticle coupling effects in nanofabricated substrates for surface-enhanced Raman scattering. <i>Applied Physics Letters</i> , 2001 , 78, 802-804	3.4	383
46	Single Molecule Vibrational Fine-structure of Tyrosine Adsorbed on Ag Nano-Crystals. <i>Single Molecules</i> , 2000 , 1, 239-248		75
45	Resonant Raman scattering and photoinduced metastability in oxygen-deficient YBa2Cu3Ox. <i>Physica C: Superconductivity and Its Applications</i> , 2000 , 338, 157-160	1.3	5
44	Raman-active phonons and their doping dependence in spin-ladder Sr14Cu24O41. <i>Physica C:</i> Superconductivity and Its Applications, 2000 , 338, 161-165	1.3	6
43	High-pressure Raman study of Bi2Sr2CaCu2O8+d:indications of strong bond-strength hierarchy and pressure-induced charge transfer. <i>Physica C: Superconductivity and Its Applications</i> , 2000 , 341-348, 2241-	- 22 42	3
42	Raman scattering in YBa2Cu4O8 and PrBa2Cu4O8 âlindications of pseudogap effects in non-superconducting PrBa2Cu4O8. <i>Physica C: Superconductivity and Its Applications</i> , 2000 , 341-348, 225	1 ¹ -2 ² 252	:
41	Electromagnetic contributions to single-molecule sensitivity in surface-enhanced raman scattering. <i>Physical Review E</i> , 2000 , 62, 4318-24	2.4	1348
40	Anisotropic dynamical scaling in a weakly 3D system: The case of oxygen ordering in YBa 2 Cu 3 O 6.5. <i>Europhysics Letters</i> , 2000 , 51, 447-453	1.6	3
39	Lattice and charge excitations in La1â⊠SrxMnO3. <i>Physical Review B</i> , 2000 , 61, 1193-1197	3.3	41
38	Raman scattering in YBa2Cu4O8 and PrBa2Cu4O8: Indications of pseudogap effects in nonsuperconducting PrBa2Cu4O8. <i>Physical Review B</i> , 2000 , 61, 7049-7054	3.3	14

37	Single Molecule Vibrational Fine-structure of Tyrosine Adsorbed on Ag Nano-Crystals 2000 , 1, 239		3
36	Raman-active phonons and their doping dependence in Pb-based cuprate superconductors. <i>Physical Review B</i> , 1999 , 60, 6316-6319	3.3	5
35	Phonon Raman scattering of Bi2Sr2CaCu2O8+d under hydrostatic pressure. <i>Physical Review B</i> , 1999 , 59, 8447-8450	3.3	6
34	Superstructure formation and the structural phase diagram of YBa2Cu3O6+x. <i>Physica C:</i> Superconductivity and Its Applications, 1999 , 317-318, 259-269	1.3	67
33	Spectroscopy of Single Hemoglobin Molecules by Surface Enhanced Raman Scattering. <i>Physical Review Letters</i> , 1999 , 83, 4357-4360	7.4	2053
32	Optimizing nanofabricated substrates for Surface Enhanced Raman Scattering. <i>Scripta Materialia</i> , 1999 , 12, 783-788		31
31	Raman-active phonons in Bi2Sr2CanâllCunO2n+4d (n=1,2,3) âlphonon assignment and charge redistribution effects. <i>Journal of Physics and Chemistry of Solids</i> , 1998 , 59, 2003-2005	3.9	6
30	Resonance Raman scattering as a probe of oxygen dynamics in YBa2Cu3Ox. <i>Journal of Physics and Chemistry of Solids</i> , 1998 , 59, 1988-1990	3.9	1
29	Neutron-scattering studies of a polymer electrolyte, PPOI?LiClO4. <i>Solid State Ionics</i> , 1998 , 113-115, 139-147	3.3	20
28	CuO-chain Raman scattering and photoinduced metastability in YBa2Cu3Ox. <i>Physical Review B</i> , 1998 , 57, R14072-R14075	3.3	32
27	Raman-active phonons in Bi2Sr2â\(\text{LaxCuO6+d: Phonon assignment and charge-redistribution effects. \(\text{Physical Review B, 1997}\), 56, 2847-2851	3.3	24
26	Screened Raman response in two-dimensional dx2â¶2-wave superconductors: Relative intensities in different symmetry channels. <i>Physical Review B</i> , 1997 , 55, 97-100	3.3	21
25	Pr substitution in Y2Ba4Cu6+nO14+nâd (n = 0, 1, 2) influence on structure and Tc. <i>Physica C:</i> Superconductivity and Its Applications, 1996 , 259, 97-108	1.3	3
24	Change in phonon Raman spectra of Bi2Sr2Ca1xYxCu2O8 + d induced by hole filling and implications for phonon assignments. <i>Materials Science and Engineering B: Solid-State Materials for Advanced Technology</i> , 1996 , 41, 107-110	3.1	
23	Effects of Zn substitution for Cu on Raman phonon anomalies in double-chain YBa2Cu4O8 superconductors. <i>Physical Review B</i> , 1996 , 53, 3566-3572	3.3	10
22	Raman-active phonons in Bi2Sr2Ca1-xYxCu2O8+d (x=0-1): Effects of hole filling and internal pressure induced by Y doping for Ca, and implications for phonon assignments. <i>Physical Review B</i> , 1996 , 53, 11796-11806	3.3	81
21	Phonon Raman scattering in Y1-xPrxBa2Cu4O8 (x=0-1) and (Y1-xPrx)2Ba4Cu7O15- delta (x=0-0.6). <i>Physical Review B</i> , 1996 , 53, 3590-3597	3.3	11
20	Substitution of Pr for Y in YBa2Cu4O8 and YBa2Cu3.5O7.5 âluperconductors: Phonon modes and charge transfer effects. <i>Journal of Physics and Chemistry of Solids</i> , 1995 , 56, 1833	3.9	

19	Influence of Zn-doping on the electronic raman scattering of YBa2Cu3O7 âIII <i>Journal of Physics and Chemistry of Solids</i> , 1995 , 56, 1835	3.9	3
18	Superconducting gap in Pr x Y1â\(\mathbb{R}\) Ba2Cu4O8 and YBa2â\(\mathbb{J}\) Sr y Cu4O8 probed by infrared phonon self-energies. Journal of Superconductivity and Novel Magnetism, 1994 , 7, 113-116		1
17	Anomalous behaviour of the 147 cmâll Cu(2) Raman mode in YBa2Cu4O8 under high pressure. Signature of change in the electronic state of the CuO2 plane. <i>Physica C: Superconductivity and Its Applications</i> , 1994 , 230, 199-206	1.3	8
16	Temperature dependence of phonon Raman scattering in Y2Ba4Cu7O15â\(\textit{D}Physica C:\) Superconductivity and Its Applications, 1994 , 225, 317-324	1.3	30
15	Oxygen phonons in orthorhombic and tetragonal Tl2Ba2CuO6 investigated by Raman scattering. <i>Physica C: Superconductivity and Its Applications</i> , 1994 , 220, 131-137	1.3	9
14	Y-123; the influence of various dopant ions on structure and properties. <i>Physica C: Superconductivity and Its Applications</i> , 1994 , 235-240, 389-390	1.3	4
13	Symmetry-dependent phonon interactions in YBa2Cu4O8 superconductors: a Raman and infrared spectroscopic study. <i>Physica C: Superconductivity and Its Applications</i> , 1994 , 235-240, 1091-1092	1.3	
12	Is there a correlation between Tc and the features of the B1g Raman continuum in YBa2Cu3O7âgd?. <i>Physica C: Superconductivity and Its Applications</i> , 1994 , 235-240, 1095-1096	1.3	3
11	Charge-transfer and compression effects of isomorphous substitutions in YBa2Cu3O7. <i>Physical Review B</i> , 1993 , 47, 5359-5366	3.3	76
10	The effects of Co substitutions for Cu in YBa2Cu3O6+x on the phonon Raman spectrum. <i>Journal of Alloys and Compounds</i> , 1993 , 195, 363-366	5.7	10
9	Structural and physical properties of rare-earth- (R-) substituted RBa2Cu4O8âd superconductors. Journal of Alloys and Compounds, 1993 , 193, 132-134	5.7	4
8	Polymerized complex synthesis of a pure 93 K Y2Ba4Cu7O15âd superconductor without the need of high oxygen pressure and additive catalysts. <i>Journal of Applied Physics</i> , 1993 , 73, 2424-2428	2.5	25
7	Evidence for a scaling of the superconducting gap with Tc in PrxY1â\Ba2Cu4O8. <i>Solid State Communications</i> , 1993 , 87, 907-911	1.6	10
6	Structure of Y (Pr) Ba2Cu4O8. <i>Physica C: Superconductivity and Its Applications</i> , 1992 , 204, 147-154	1.3	28
5	High-quality ceramics of YBa2Cu4O8 from citrate sol-gel precursors sintered at one atmosphere oxygen pressure. <i>Physica C: Superconductivity and Its Applications</i> , 1991 , 173, 377-380	1.3	35
4	Changes in the apical oxygen vibrational frequency and Tc due to Sr substitution for Ba in YB2Cu3O7âŊ, Tl2Ba2CaCu2O8âŊ and Tl2Ba2CuO6âŊ superconductors. <i>Physica C: Superconductivity and Its Applications</i> , 1991 , 185-189, 821-822	1.3	6
3	Neutron diffraction and Raman spectroscopic studies of Y-123. <i>Physica C: Superconductivity and Its Applications</i> , 1991 , 185-189, 893-894	1.3	3
2	Neutron diffraction studies of TL-2201, TL-2212 and Y-123 doped with strontium. <i>Physica C:</i> Superconductivity and Its Applications, 1991 , 185-189, 623-624	1.3	10

Neutron diffraction studies of TL-2201 and TL-2212 doped with lanthanum. *Physica C: Superconductivity and Its Applications*, **1991**, 185-189, 625-626

1.3

4