Junhwan Kim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2951635/publications.pdf

Version: 2024-02-01

567144 526166 46 838 15 27 citations h-index g-index papers 47 47 47 1272 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Phospholipid Screening Postcardiac Arrest Detects Decreased Plasma Lysophosphatidylcholine: Supplementation as a New Therapeutic Approach. Critical Care Medicine, 2022, 50, e199-e208.	0.4	11
2	Preserving Brain <scp>LPCâ€DHA</scp> by Plasma Supplementation Attenuates Brain Injury after Cardiac Arrest. Annals of Neurology, 2022, 91, 389-403.	2.8	7
3	Metforminâ€mediated mitochondrial protection postâ€cardiac arrest improves EEG activity and confers neuroprotection and survival benefit. FASEB Journal, 2022, 36, e22307.	0.2	6
4	The standardized method and clinical experience may improve the reliability of visually assessed capillary refill time. American Journal of Emergency Medicine, 2021, 44, 284-290.	0.7	12
5	The evaluation of pituitary damage associated with cardiac arrest: An experimental rodent model. Scientific Reports, 2021, 11, 629.	1.6	5
6	Pharmacological Approach for Neuroprotection After Cardiac Arrestâ€"A Narrative Review of Current Therapies and Future Neuroprotective Cocktail. Frontiers in Medicine, 2021, 8, 636651.	1.2	23
7	Mitochondrial transplantation therapy for ischemia reperfusion injury: a systematic review of animal and human studies. Journal of Translational Medicine, 2021, 19, 214.	1.8	35
8	A method for measuring the molecular ratio of inhalation to exhalation and effect of inspired oxygen levels on oxygen consumption. Scientific Reports, 2021, 11, 12815.	1.6	8
9	Understanding physiologic phospholipid maintenance in the context of brain mitochondrial phospholipid alterations after cardiac arrest. Mitochondrion, 2021, 60, 112-120.	1.6	6
10	Increased plasma disequilibrium between pro- and anti-oxidants during the early phase resuscitation after cardiac arrest is associated with increased levels of oxidative stress end-products. Molecular Medicine, 2021, 27, 135.	1.9	6
11	Hydrogen gas with extracorporeal cardiopulmonary resuscitation improves survival after prolonged cardiac arrest in rats. Journal of Translational Medicine, 2021, 19, 462.	1.8	8
12	Relative Ratios Enhance the Diagnostic Power of Phospholipids in Distinguishing Benign and Cancerous Ovarian Masses. Cancers, 2020, 12, 72.	1.7	7
13	Identification of unusual phospholipids from bovine heart mitochondria by HPLC-MS/MS. Journal of Lipid Research, 2020, 61, 1707-1719.	2.0	8
14	Plasma metabolomics supports the use of long-duration cardiac arrest rodent model to study human disease by demonstrating similar metabolic alterations. Scientific Reports, 2020, 10, 19707.	1.6	16
15	Low temperature increases capillary blood refill time following mechanical fingertip compression of healthy volunteers: prospective cohort study. Journal of Clinical Monitoring and Computing, 2019, 33, 259-267.	0.7	17
16	Thinking in Polyunsaturated Fatty Acids, Phospholipids, and the Brain., 2019, , 21-32.		2
17	Tissueâ€Specific Metabolic Profiles After Prolonged Cardiac Arrest Reveal Brain Metabolome Dysfunction Predominantly After Resuscitation. Journal of the American Heart Association, 2019, 8, e012809.	1.6	28
18	Does training level affect the accuracy of visual assessment of capillary refill time?. Critical Care, 2019, 23, 157.	2.5	16

#	Article	IF	CITATIONS
19	Challenges and Inconsistencies in Using Lysophosphatidic Acid as a Biomarker for Ovarian Cancer. Cancers, 2019, 11, 520.	1.7	21
20	Comparison of point-of-care peripheral perfusion assessment using pulse oximetry sensor with manual capillary refill time: clinical pilot study in the emergency department. Journal of Intensive Care, 2019, 7, 52.	1.3	14
21	Increased Survival Time With SS-31 After Prolonged Cardiac Arrest in Rats. Heart Lung and Circulation, 2019, 28, 505-508.	0.2	13
22	Combination of cardiac and thoracic pump theories in rodent cardiopulmonary resuscitation: a new method of three-side chest compression. Intensive Care Medicine Experimental, 2019, 7, 62.	0.9	8
23	Blood refill time: Clinical bedside monitoring of peripheral blood perfusion using pulse oximetry sensor and mechanical compression. American Journal of Emergency Medicine, 2018, 36, 2310-2312.	0.7	8
24	Comprehensive analysis of phospholipids in the brain, heart, kidney, and liver: brain phospholipids are least enriched with polyunsaturated fatty acids. Molecular and Cellular Biochemistry, 2018, 442, 187-201.	1.4	94
25	Cardiac mitochondrial structure and function in tafazzin-knockdown mice. Mitochondrion, 2018, 43, 53-62.	1.6	14
26	The role of decreased cardiolipin and impaired electron transport chain in brain damage due to cardiac arrest. Neurochemistry International, 2018, 120, 200-205.	1.9	14
27	Dissociated Oxygen Consumption and Carbon Dioxide Production in the Post–Cardiac Arrest Rat: A Novel Metabolic Phenotype. Journal of the American Heart Association, 2018, 7, .	1.6	30
28	Comparing phospholipid profiles of mitochondria and whole tissue: Higher PUFA content in mitochondria is driven by increased phosphatidylcholine unsaturation. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2018, 1093-1094, 147-157.	1.2	12
29	Potential of lysophosphatidylinositol as a prognostic indicator of cardiac arrest using a rat model. Biomarkers, 2017, 22, 755-763.	0.9	11
30	The Responses of Tissues from the Brain, Heart, Kidney, and Liver to Resuscitation following Prolonged Cardiac Arrest by Examining Mitochondrial Respiration in Rats. Oxidative Medicine and Cellular Longevity, 2016, 2016, 1-7.	1.9	29
31	DHA-supplemented diet increases the survival of rats following asphyxia-induced cardiac arrest and cardiopulmonary bypass resuscitation. Scientific Reports, 2016, 6, 36545.	1.6	7
32	The effects of early high-volume hemofiltration on prolonged cardiac arrest in rats with reperfusion by cardiopulmonary bypass: a randomized controlled animal study. Intensive Care Medicine Experimental, 2016, 4, 25.	0.9	9
33	Developing dual hemofiltration plus cardiopulmonary bypass in rodents. Journal of Surgical Research, 2015, 195, 196-203.	0.8	3
34	Phospholipid alterations in the brain and heart in a rat model of asphyxia-induced cardiac arrest and cardiopulmonary bypass resuscitation. Molecular and Cellular Biochemistry, 2015, 408, 273-281.	1.4	31
35	Examination of Physiological Function and Biochemical Disorders in a Rat Model of Prolonged Asphyxia-Induced Cardiac Arrest followed by Cardio Pulmonary Bypass Resuscitation. PLoS ONE, 2014, 9, e112012.	1.1	18
36	The synthesis and characterization of a group of transition metal octabutoxynaphthalocyanines and the absorption and emission properties of the Co, Rh, Ir, Ni, Pd and Pt members of this group. Polyhedron, 2013, 57, 64-69.	1.0	9

#	Article	IF	CITATIONS
37	Comprehensive approach to the quantitative analysis of mitochondrial phospholipids by HPLC–MS. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 2013, 912, 105-114.	1.2	40
38	The synthesis and properties of iron, ruthenium, and osmium octabutoxynaphthalocyanine. Journal of Porphyrins and Phthalocyanines, 2012, 16, 1068-1071.	0.4	1
39	Improved Mitochondrial Function with Diet-Induced Increase in Either Docosahexaenoic Acid or Arachidonic Acid in Membrane Phospholipids. PLoS ONE, 2012, 7, e34402.	1.1	72
40	Cardiolipin: characterization of distinct oxidized molecular species. Journal of Lipid Research, 2011, 52, 125-135.	2.0	54
41	Monolysocardiolipin: improved preparation with high yield. Journal of Lipid Research, 2011, 52, 389-392.	2.0	11
42	Photosensitization of intact heart mitochondria by the phthalocyanine Pc 4: Correlation of structural and functional deficits with cytochrome c release. Free Radical Biology and Medicine, 2010, 49, 726-732.	1.3	14
43	Photo-oxidation of cardiolipin and cytochrome c with bilayer-embedded Pc 4. Free Radical Biology and Medicine, 2010, 49, 718-725.	1.3	18
44	Identifying initial molecular targets of PDT: protein and lipid oxidation products. Proceedings of SPIE, 2009, , .	0.8	0
45	Oxidative modification of cytochrome c by singlet oxygen. Free Radical Biology and Medicine, 2008, 44, 1700-1711.	1.3	62
46	Protein oxidation by the phthalocyanine photosensitizer Pc 4 and light: detection of a unique singlet oxygen-generated product in cytochrome c. , 2008, , .		0