Samuel H Gellman

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/295149/publications.pdf Version: 2024-02-01

		3726	4641
295	32,446	89	170
papers	citations	h-index	g-index
314	314	314	18324
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature, 2011, 477, 549-555.	13.7	2,712
2	Foldamers:  A Manifesto. Accounts of Chemical Research, 1998, 31, 173-180.	7.6	2,390
3	\hat{I}^2 -Peptides:  From Structure to Function. Chemical Reviews, 2001, 101, 3219-3232.	23.0	1,772
4	Structure of a nanobody-stabilized active state of the \hat{I}^22 adrenoceptor. Nature, 2011, 469, 175-180.	13.7	1,523
5	Structure and function of an irreversible agonist-β2 adrenoceptor complex. Nature, 2011, 469, 236-240.	13.7	741
6	β-Peptide Foldamers: Robust Helix Formation in a New Family of β-Amino Acid Oligomers. Journal of the American Chemical Society, 1996, 118, 13071-13072.	6.6	656
7	Foldamers with Heterogeneous Backbones. Accounts of Chemical Research, 2008, 41, 1399-1408.	7.6	646
8	Non-haemolytic β-amino-acid oligomers. Nature, 2000, 404, 565-565.	13.7	621
9	Residue-based control of helix shape in β-peptide oligomers. Nature, 1997, 387, 381-384.	13.7	609
10	Mimicry of Antimicrobial Host-Defense Peptides by Random Copolymers. Journal of the American Chemical Society, 2007, 129, 15474-15476.	6.6	403
11	Maltose–neopentyl glycol (MNG) amphiphiles for solubilization, stabilization and crystallization of membrane proteins. Nature Methods, 2010, 7, 1003-1008.	9.0	397
12	Mimicry of Host-Defense Peptides by Unnatural Oligomers:  Antimicrobial β-Peptides. Journal of the American Chemical Society, 2002, 124, 7324-7330.	6.6	373
13	Minimal model systems for β-sheet secondary structure in proteins. Current Opinion in Chemical Biology, 1998, 2, 717-725.	2.8	339
14	Structureâ^'Activity Studies of 14-Helical Antimicrobial β-Peptides: Probing the Relationship between Conformational Stability and Antimicrobial Potency. Journal of the American Chemical Society, 2002, 124, 12774-12785.	6.6	269
15	Rules for Antiparallel β-Sheet Design:Âd-Pro-Gly Is Superior tol-Asn-Gly for β-Hairpin Nucleation1. Journal of the American Chemical Society, 1998, 120, 4236-4237.	6.6	264
16	Stereochemical Requirements for β-Hairpin Formation: Model Studies with Four-Residue Peptides and Depsipeptides. Journal of the American Chemical Society, 1996, 118, 6975-6985.	6.6	259
17	Structural and biological mimicry of protein surface recognition by $\hat{I}\pm/\hat{I}^2$ -peptide foldamers. Proceedings of the National Academy of Sciences of the United States of America, 2009, 106, 14751-14756.	3.3	250
18	Diphenylprolinol Methyl Ether:  A Highly Enantioselective Catalyst for Michael Addition of Aldehydes to Simple Enones. Organic Letters, 2005, 7, 4253-4256.	2.4	248

#	Article	IF	CITATIONS
19	Insights on β-Hairpin Stability in Aqueous Solution from Peptides with Enforced Type Iâ€~ and Type Ilâ€~ β-Turns. Journal of the American Chemical Society, 1997, 119, 2303-2304.	6.6	247
20	Intramolecular Hydrogen Bonding in Derivatives of .betaAlanine and .gammaAmino Butyric Acid; Model Studies for the Folding of Unnatural Polypeptide Backbones. Journal of the American Chemical Society, 1994, 116, 1054-1062.	6.6	243
21	Translocation of a \hat{I}^2 -Peptide Across Cell Membranes. Journal of the American Chemical Society, 2002, 124, 368-369.	6.6	226
22	Structureâ activity Relationships among Random Nylon-3 Copolymers That Mimic Antibacterial Host-Defense Peptides. Journal of the American Chemical Society, 2009, 131, 9735-9745.	6.6	225
23	Synthesis and Structural Characterization of Helix-Forming β-Peptides: trans-2-Aminocyclopentanecarboxylic Acid Oligomers. Journal of the American Chemical Society, 1999, 121, 7574-7581.	6.6	222
24	Unexpected Relationships between Structure and Function in α,β-Peptides:  Antimicrobial Foldamers with Heterogeneous Backbones. Journal of the American Chemical Society, 2004, 126, 6848-6849.	6.6	213
25	Artificial Chaperone-Assisted Refolding of Denatured-Reduced Lysozyme:Â Modulation of the Competition between Renaturation and Aggregationâ€. Biochemistry, 1996, 35, 15760-15771.	1.2	212
26	Interplay among Folding, Sequence, and Lipophilicity in the Antibacterial and Hemolytic Activities of $\hat{I} \pm / \hat{I}^2$ -Peptides. Journal of the American Chemical Society, 2007, 129, 417-428.	6.6	212
27	Catalytic Transamidation under Moderate Conditions. Journal of the American Chemical Society, 2003, 125, 3422-3423.	6.6	207
28	Cytoplasmic and Nuclear Delivery of a TAT-derived Peptide and a β-Peptide after Endocytic Uptake into HeLa Cells. Journal of Biological Chemistry, 2003, 278, 50188-50194.	1.6	206
29	Two Helical Conformations from a Single Foldamer Backbone:"Split Personality―in Shortα/β-Peptides. Angewandte Chemie - International Edition, 2004, 43, 505-510.	7.2	206
30	Enantioselective Organocatalytic Michael Additions of Aldehydes to Enones with Imidazolidinones:Â Cocatalyst Effects and Evidence for an Enamine Intermediate. Journal of the American Chemical Society, 2005, 127, 11598-11599.	6.6	201
31	Use of a Designed Triple-Stranded Antiparallel β-Sheet To Probe β-Sheet Cooperativity in Aqueous Solution. Journal of the American Chemical Society, 1998, 120, 4869-4870.	6.6	197
32	Formation of Short, Stable Helices in Aqueous Solution by β-Amino Acid Hexamers. Journal of the American Chemical Society, 1999, 121, 2309-2310.	6.6	194
33	Synthesis and Characterization oftrans-2-Aminocyclohexanecarboxylic Acid Oligomers:Â An Unnatural Helical Secondary Structure and Implications for β-Peptide Tertiary Structure. Journal of the American Chemical Society, 1999, 121, 6206-6212.	6.6	193
34	Helix Bundle Quaternary Structure from $\hat{I}\pm/\hat{I}^2$ -Peptide Foldamers. Journal of the American Chemical Society, 2007, 129, 4178-4180.	6.6	191
35	Catalytic Transamidation Reactions Compatible with Tertiary Amide Metathesis under Ambient Conditions. Journal of the American Chemical Society, 2009, 131, 10003-10008.	6.6	187
36	Antiparallel Sheet Formation in β-Peptide Foldamers: Effects of β-Amino Acid Substitution on Conformational Preference1. Journal of the American Chemical Society, 1997, 119, 11719-11720.	6.6	182

#	Article	IF	CITATIONS
37	PTH receptor-1 signalling—mechanistic insights and therapeutic prospects. Nature Reviews Endocrinology, 2015, 11, 712-724.	4.3	179
38	Tuning the Biological Activity Profile of Antibacterial Polymers via Subunit Substitution Pattern. Journal of the American Chemical Society, 2014, 136, 4410-4418.	6.6	175
39	Targeting protein–protein interactions: Lessons from p53/MDM2. Biopolymers, 2007, 88, 657-686.	1.2	170
40	Enantioselective Organocatalytic Aminomethylation of Aldehydes:  A Role for Ionic Interactions and Efficient Access to β2-Amino Acids. Journal of the American Chemical Society, 2006, 128, 6804-6805.	6.6	167
41	Chimeric (α/β + α)-Peptide Ligands for the BH3-Recognition Cleft of Bcl-xL:  Critical Role of the Molecular Scaffold in Protein Surface Recognition. Journal of the American Chemical Society, 2005, 127, 11966-11968.	6.6	166
42	Enantioselective Organocatalytic Michael Addition of Aldehydes to Nitroethylene: Efficient Access to γ ² -Amino Acids. Journal of the American Chemical Society, 2008, 130, 5608-5609.	6.6	166
43	Modulation of hydrophobic interactions by proximally immobilized ions. Nature, 2015, 517, 347-350.	13.7	163
44	(α/β+α)-Peptide Antagonists of BH3 Domain/Bcl-xL Recognition:  Toward General Strategies for Foldamer-Based Inhibition of Proteinâ^'Protein Interactions. Journal of the American Chemical Society, 2007, 129, 139-154.	6.6	160
45	Dual Mechanism of Bacterial Lethality for a Cationic Sequence-Random Copolymer that Mimics Host-Defense Antimicrobial Peptides. Journal of Molecular Biology, 2008, 379, 38-50.	2.0	158
46	Intranasal fusion inhibitory lipopeptide prevents direct-contact SARS-CoV-2 transmission in ferrets. Science, 2021, 371, 1379-1382.	6.0	158
47	Biocidal Activity of Polystyrenes That Are Cationic by Virtue of Protonation. Organic Letters, 2004, 6, 557-560.	2.4	151
48	A Rationally Designed Aldolase Foldamer. Angewandte Chemie - International Edition, 2009, 48, 922-925.	7.2	150
49	Antifungal Activity from 14-Helical β-Peptides. Journal of the American Chemical Society, 2006, 128, 12630-12631.	6.6	145
50	Evaluation of Diverse α/β-Backbone Patterns for Functional α-Helix Mimicry: Analogues of the Bim BH3 Domain. Journal of the American Chemical Society, 2012, 134, 315-323.	6.6	144
51	Highâ€Resolution Structural Characterization of a Helical α/βâ€Peptide Foldamer Bound to the Antiâ€Apoptotic Protein Bclâ€x _L . Angewandte Chemie - International Edition, 2009, 48, 4318-4322.	7.2	143
52	A β-Peptide Reverse Turn that Promotes Hairpin Formation. Journal of the American Chemical Society, 1998, 120, 10555-10556.	6.6	142
53	Interstrand Side Chainâ^'Side Chain Interactions in a Designed β-Hairpin:  Significance of Both Lateral and Diagonal Pairings. Journal of the American Chemical Society, 2001, 123, 8667-8677.	6.6	141
54	12-Helix Formation in Aqueous Solution with Short β-Peptides Containing Pyrrolidine-Based Residues. Journal of the American Chemical Society, 2000, 122, 4821-4822.	6.6	140

#	Article	IF	CITATIONS
55	Sequenceâ€Based Design of α/βâ€Peptide Foldamers That Mimic BH3 Domains. Angewandte Chemie - International Edition, 2008, 47, 2853-2856.	7.2	135
56	Stereospecific Synthesis of Conformationally Constrained γ-Amino Acids: New Foldamer Building Blocks That Support Helical Secondary Structure. Journal of the American Chemical Society, 2009, 131, 16018-16020.	6.6	135
57	Toward β-Peptide Tertiary Structure:  Self-Association of an Amphiphilic 14-Helix in Aqueous Solution. Organic Letters, 2001, 3, 3963-3966.	2.4	129
58	A Designedβ-Hairpin Containing a Natural Hydrophobic Cluster. Angewandte Chemie - International Edition, 2000, 39, 2330-2333.	7.2	128
59	Stereochemical Control of Hairpin Formation in β-Peptides Containing Dinipecotic Acid Reverse Turn Segments. Journal of the American Chemical Society, 2000, 122, 3995-4004.	6.6	128
60	Nylon-3 Polymers with Selective Antifungal Activity. Journal of the American Chemical Society, 2013, 135, 5270-5273.	6.6	127
61	"Mirror image" reverse turns promote .betahairpin formation. Journal of the American Chemical Society, 1994, 116, 4105-4106.	6.6	123
62	NMR-Based Quantification of β-Sheet Populations in Aqueous Solution through Use of Reference Peptides for the Folded and Unfolded States. Journal of the American Chemical Society, 1999, 121, 11577-11578.	6.6	123
63	A New Class of Amphiphiles Bearing Rigid Hydrophobic Groups for Solubilization and Stabilization of Membrane Proteins. Chemistry - A European Journal, 2012, 18, 9485-9490.	1.7	120
64	Residue Requirements for Helical Folding in Short α/β-Peptides: Crystallographic Characterization of the 11-Helix in an Optimized Sequence. Journal of the American Chemical Society, 2005, 127, 13130-13131.	6.6	119
65	Solution Conformations of Helix-Forming \hat{l}^2 -Amino Acid Homooligomers. Journal of the American Chemical Society, 2000, 122, 2711-2718.	6.6	118
66	Protein Prosthesis:  A Semisynthetic Enzyme with a β-Peptide Reverse Turn. Journal of the American Chemical Society, 2002, 124, 8522-8523.	6.6	117
67	Environment-Independent 14-Helix Formation in Short β-Peptides: Striking a Balance between Shape Control and Functional Diversity. Journal of the American Chemical Society, 2003, 125, 5592-5593.	6.6	115
68	Interplay among side chain sequence, backbone composition, and residue rigidification in polypeptide folding and assembly. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 9151-9156.	3.3	115
69	Structure–Activity Relationships among Antifungal Nylon-3 Polymers: Identification of Materials Active against Drug-Resistant Strains of <i>Candida albicans</i> . Journal of the American Chemical Society, 2014, 136, 4333-4342.	6.6	113
70	Analysis of the factors that stabilize a designed two-stranded antiparallel β-sheet. Protein Science, 2002, 11, 1492-1505.	3.1	111
71	Backbone modification of a polypeptide drug alters duration of action in vivo. Nature Biotechnology, 2014, 32, 653-655.	9.4	103
72	Effects of Conformational Stability and Geometry of Guanidinium Display on Cell Entry by β-Peptides. Journal of the American Chemical Society, 2005, 127, 3686-3687.	6.6	101

#	Article	IF	CITATIONS
73	αĴβ-Peptide Foldamers Targeting Intracellular Protein–Protein Interactions with Activity in Living Cells. Journal of the American Chemical Society, 2015, 137, 11365-11375.	6.6	101
74	Ketones from Nickel atalyzed Decarboxylative, Non‣ymmetric Crossâ€Electrophile Coupling of Carboxylic Acid Esters. Angewandte Chemie - International Edition, 2019, 58, 12081-12085.	7.2	100
75	Efficient Synthesis of a β-Peptide Combinatorial Library with Microwave Irradiation. Journal of the American Chemical Society, 2005, 127, 13271-13280.	6.6	99
76	Stabilizing and Destabilizing Effects of Phenylalanine → F5-Phenylalanine Mutations on the Folding of a Small Protein. Journal of the American Chemical Society, 2006, 128, 15932-15933.	6.6	99
77	Antimicrobial 14-Helical β-Peptides:  Potent Bilayer Disrupting Agents. Biochemistry, 2004, 43, 9527-9535.	1.2	98
78	Theoretical and Experimental Circular Dichroic Spectra of the Novel Helical Foldamer Poly[(1R,2R)-trans-2-aminocyclopentanecarboxylic acid]. Journal of the American Chemical Society, 1998, 120, 4891-4892.	6.6	97
79	Parallel Sheet Secondary Structure in γ-Peptides. Journal of the American Chemical Society, 2001, 123, 11077-11078.	6.6	97
80	New Helical Foldamers: Heterogeneous Backbones with 1:2 and 2:1 α:β-Amino Acid Residue Patterns. Journal of the American Chemical Society, 2006, 128, 4538-4539.	6.6	97
81	Nanofibers and Lyotropic Liquid Crystals from a Class of Selfâ€Assembling βâ€Peptides. Angewandte Chemie - International Edition, 2008, 47, 1241-1244.	7.2	96
82	Interplay between hydrophobic cluster and loop propensity in β-hairpin formation11Edited by P. E. Wright. Journal of Molecular Biology, 2001, 306, 397-402.	2.0	95
83	Mechanism of AlIII-Catalyzed Transamidation of Unactivated Secondary Carboxamides. Journal of the American Chemical Society, 2006, 128, 5177-5183.	6.6	95
84	Rational Development of β-Peptide Inhibitors of Human Cytomegalovirus Entry. Journal of Biological Chemistry, 2006, 281, 2661-2667.	1.6	95
85	Discrete Heterogeneous Quaternary Structure Formed by α/β-Peptide Foldamers and α-Peptides. Journal of the American Chemical Society, 2007, 129, 6376-6377.	6.6	93
86	Targeting diverse protein–protein interaction interfaces with α/β-peptides derived from the Z-domain scaffold. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4552-4557.	3.3	93
87	Helix Formation in Preorganized β/γ-Peptide Foldamers: Hydrogen-Bond Analogy to the α-Helix without α-Amino Acid Residues. Journal of the American Chemical Society, 2010, 132, 7868-7869.	6.6	92
88	Extending Foldamer Design beyond α-Helix Mimicry: α/β-Peptide Inhibitors of Vascular Endothelial Growth Factor Signaling. Journal of the American Chemical Society, 2012, 134, 7652-7655.	6.6	92
89	Efficient Synthesis of Enantiomerically Pure β2-Amino Acids via Chiral Isoxazolidinones. Journal of Organic Chemistry, 2003, 68, 1575-1578.	1.7	91
90	Parallel β-Sheet Vibrational Couplings Revealed by 2D IR Spectroscopy of an Isotopically Labeled Macrocycle: Quantitative Benchmark for the Interpretation of Amyloid and Protein Infrared Spectra. Journal of the American Chemical Society, 2012, 134, 19118-19128.	6.6	91

#	Article	IF	CITATIONS
91	α-Helix Mimicry with α/β-Peptides. Methods in Enzymology, 2013, 523, 407-429.	0.4	91
92	Crystallographic Characterization of Helical Secondary Structures in $\hat{1}\pm / \hat{1}^2$ -Peptides with 1:1 Residue Alternation. Journal of the American Chemical Society, 2008, 130, 6544-6550.	6.6	89
93	Energetic Superiority of Two-Center Hydrogen Bonding Relative To Three-Center Hydrogen Bonding in a Model System. Journal of the American Chemical Society, 1998, 120, 9090-9091.	6.6	88
94	Foldamer-templated catalysis of macrocycle formation. Science, 2019, 366, 1528-1531.	6.0	87
95	Tandem Facial Amphiphiles for Membrane Protein Stabilization. Journal of the American Chemical Society, 2010, 132, 16750-16752.	6.6	85
96	A Potent α∫β-Peptide Analogue of GLP-1 with Prolonged Action in Vivo. Journal of the American Chemical Society, 2014, 136, 12848-12851.	6.6	83
97	Redox-Triggered Secondary Structure Changes in the Aggregated States of a Designed Methionine-Rich Peptide. Journal of the American Chemical Society, 1996, 118, 12487-12494.	6.6	82
98	Backbone Thioester Exchange:Â A New Approach to Evaluating Higher Order Structural Stability in Polypeptides. Journal of the American Chemical Society, 2004, 126, 11172-11174.	6.6	80
99	Lyotropic Liquid Crystals from Designed Helical β-Peptides. Journal of the American Chemical Society, 2006, 128, 8730-8731.	6.6	80
100	Glucose-Neopentyl Glycol (GNG) amphiphiles for membrane protein study. Chemical Communications, 2013, 49, 2287-2289.	2.2	79
101	Control of Hairpin Formation via Proline Configuration in Parallel Î ² -Sheet Model Systems. Journal of the American Chemical Society, 2000, 122, 5443-5447.	6.6	78
102	Exploration of Backbone Space in Foldamers Containing α- and β-Amino Acid Residues: Developing Protease-Resistant Oligomers that Bind Tightly to the BH3-Recognition Cleft of Bcl-xL. ChemBioChem, 2007, 8, 903-916.	1.3	77
103	Targeting recognition surfaces on natural proteins with peptidic foldamers. Current Opinion in Structural Biology, 2016, 39, 96-105.	2.6	76
104	Practical Synthesis of Enantiomerically Pure β2-Amino Acids via Proline-Catalyzed Diastereoselective Aminomethylation of Aldehydes. Journal of the American Chemical Society, 2007, 129, 6050-6055.	6.6	75
105	Access to Poly-β-Peptides with Functionalized Side Chains and End Groups via Controlled Ring-Opening Polymerization of β-Lactams. Journal of the American Chemical Society, 2009, 131, 1589-1597.	6.6	75
106	An Efficient Route to Either Enantiomer oftrans-2-Aminocyclopentanecarboxylic Acid. Journal of Organic Chemistry, 2001, 66, 5629-5632.	1.7	74
107	Beyond the Hydrophobic Effect:Â Attractions Involving Heteroaromatic Rings in Aqueous Solution1. Journal of the American Chemical Society, 2001, 123, 1244-1245.	6.6	73
108	Tolerance of Acyclic Residues in the β-Peptide 12-Helix: Access to Diverse Side-Chain Arrays for Biological Applications. Journal of the American Chemical Society, 2002, 124, 6820-6821.	6.6	73

#	Article	IF	CITATIONS
109	Design of Non-Cysteine-Containing Antimicrobial β-Hairpins: Structureâ^'Activity Relationship Studies with Linear Protegrin-1 Analoguesâ€. Biochemistry, 2002, 41, 12835-12842.	1.2	73
110	Preferred side-chain constellations at antiparallel coiled-coil interfaces. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 530-535.	3.3	73
111	Rigid Amphiphiles for Membrane Protein Manipulation. Angewandte Chemie - International Edition, 2000, 39, 758-761.	7.2	70
112	Hydrophile scanning as a complement to alanine scanning for exploring and manipulating protein–protein recognition: Application to the Bim BH3 domain. Protein Science, 2008, 17, 1232-1240.	3.1	70
113	Foldamer Catalysis. Journal of the American Chemical Society, 2020, 142, 17211-17223.	6.6	70
114	β-Arrestin-Biased Agonists of the GLP-1 Receptor from β-Amino Acid Residue Incorporation into GLP-1 Analogues. Journal of the American Chemical Society, 2016, 138, 14970-14979.	6.6	69
115	Variations in the turn-forming characteristics of N-Acyl proline units. Biopolymers, 1992, 32, 293-301.	1.2	68
116	Accommodation of α-Substituted Residues in the β-Peptide 12-Helix: Expanding the Range of Substitution Patterns Available to a Foldamer Scaffold. Journal of the American Chemical Society, 2003, 125, 8539-8545.	6.6	68
117	Diversity in Short Î ² -Peptide 12-Helices:Â High-Resolution Structural Analysis in Aqueous Solution of a Hexamer Containing Sulfonylated Pyrrolidine Residues. Journal of the American Chemical Society, 2001, 123, 7721-7722.	6.6	66
118	Structureâ€Guided Rational Design of α/βâ€Peptide Foldamers with High Affinity for BCLâ€2 Family Prosurvival Proteins. ChemBioChem, 2013, 14, 1564-1572.	1.3	65
119	Selective Binding of TAR RNA by a Tat-Derived \hat{I}^2 -Peptide. Organic Letters, 2003, 5, 3563-3565.	2.4	64
120	Structural Consequences of β-Amino Acid Preorganization in a Self-Assembling α/β-Peptide: Fundamental Studies of Foldameric Helix Bundles. Journal of the American Chemical Society, 2010, 132, 12378-12387.	6.6	64
121	A Fluorescence Assay for Leucine Zipper Dimerization:  Avoiding Unintended Consequences of Fluorophore Attachment. Journal of the American Chemical Society, 1999, 121, 4325-4333.	6.6	63
122	An α/β-Peptide Helix Bundle with a Pure β ³ -Amino Acid Core and a Distinctive Quaternary Structure. Journal of the American Chemical Society, 2009, 131, 9860-9861.	6.6	63
123	Inhibition of Coronavirus Entry <i>In Vitro</i> and <i>Ex Vivo</i> by a Lipid-Conjugated Peptide Derived from the SARS-CoV-2 Spike Glycoprotein HRC Domain. MBio, 2020, 11, .	1.8	63
124	Synthetic Polymers Active against <i>Clostridium difficile</i> Vegetative Cell Growth and Spore Outgrowth. Journal of the American Chemical Society, 2014, 136, 14498-14504.	6.6	62
125	An Efficient Route to Either Enantiomer of Orthogonally Protectedtrans-3-Aminopyrrolidine-4-carboxylic Acid. Journal of Organic Chemistry, 2001, 66, 3597-3599.	1.7	61
126	Crystallographic Characterization of the α/β-Peptide 14/15-Helix. Journal of the American Chemical Society, 2007, 129, 13780-13781.	6.6	61

#	Article	IF	CITATIONS
127	Enhancement of α-Helix Mimicry by an α/β-Peptide Foldamer via Incorporation of a Dense Ionic Side-Chain Array. Journal of the American Chemical Society, 2012, 134, 7317-7320.	6.6	59
128	Parallel Sheet Secondary Structure in β-Peptides. Angewandte Chemie - International Edition, 2003, 42, 2402-2405.	7.2	58
129	A Parallel β-Sheet Model System that Folds in Water. Journal of the American Chemical Society, 2001, 123, 343-344.	6.6	57
130	Titanium(IV)-Mediated Conversion of Carboxamides to Amidines and Implications for Catalytic Transamidation. Organometallics, 2005, 24, 5208-5210.	1.1	57
131	Lyotropic Liquid Crystals Formed from ACHC-Rich β-Peptides. Journal of the American Chemical Society, 2011, 133, 13604-13613.	6.6	56
132	Structural Basis of Bclâ€x _L Recognition by a BH3â€Mimetic α/βâ€₽eptide Generated by Sequenceâ€Based Design. ChemBioChem, 2011, 12, 2025-2032.	1.3	56
133	Secondary Amine Pendant Î ² -Peptide Polymers Displaying Potent Antibacterial Activity and Promising Therapeutic Potential in Treating MRSA-Induced Wound Infections and Keratitis. Journal of the American Chemical Society, 2022, 144, 1690-1699.	6.6	56
134	Glycotripod Amphiphiles for Solubilization and Stabilization of a Membraneâ€Protein Superassembly: Importance of Branching in the Hydrophilic Portion. ChemBioChem, 2008, 9, 1706-1709.	1.3	55
135	Single-Conformation and Diastereomer Specific Ultraviolet and Infrared Spectroscopy of Model Synthetic Foldamers: α/β-Peptides. Journal of the American Chemical Society, 2009, 131, 6574-6590.	6.6	55
136	Structural Mimicry of the α-Helix in Aqueous Solution with an Isoatomic α/β/γ-Peptide Backbone. Journal of the American Chemical Society, 2011, 133, 7336-7339.	6.6	55
137	Indifference to Hydrogen Bonding in a Family of Secondary Amides. Journal of the American Chemical Society, 1997, 119, 8528-8532.	6.6	54
138	Influence of Strand Number on Antiparallel β-Sheet Stability in Designed Three- and Four-stranded β-Sheets. Journal of Molecular Biology, 2003, 326, 553-568.	2.0	54
139	Building Proficient Enzymes with Foldamer Prostheses. Angewandte Chemie - International Edition, 2014, 53, 6978-6981.	7.2	54
140	An Antiparallel α-Helical Coiled-Coil Model System for Rapid Assessment of Side-Chain Recognition at the Hydrophobic Interface. Journal of the American Chemical Society, 2006, 128, 16444-16445.	6.6	53
141	Crystallographic Characterization of Helical Secondary Structures in 2:1 and 1:2 α/β-Peptides. Journal of the American Chemical Society, 2009, 131, 2917-2924.	6.6	53
142	Hydrophobicity and Helicity Regulate the Antifungal Activity of 14-Helical β-Peptides. ACS Chemical Biology, 2014, 9, 1613-1621.	1.6	53
143	Characterization of signal bias at the GLP-1 receptor induced by backbone modification of GLP-1. Biochemical Pharmacology, 2017, 136, 99-108.	2.0	53
144	Characteristic Structural Parameters for the γâ€Peptide 14â€Helix: Importance of Subunit Preorganization. Angewandte Chemie - International Edition, 2011, 50, 5843-5846.	7.2	52

#	Article	IF	CITATIONS
145	Parallel β-Sheet Secondary Structure Is Stabilized and Terminated by Interstrand Disulfide Cross-Linking. Journal of the American Chemical Society, 2012, 134, 75-78.	6.6	52
146	Non-Hydrogen-Bonded Secondary Structure in β-Peptides: Evidence from Circular Dichroism of (S)-Pyrrolidine-3- carboxylic Acid Oligomers and (S)-Nipecotic Acid Oligomers. Organic Letters, 1999, 1, 1717-1720.	2.4	51
147	HeLa Cell Entry by Guanidinium-Rich β-Peptides: Importance of Specific Cation–Cell Surface Interactions. ChemBioChem, 2007, 8, 917-926.	1.3	51
148	Parallel synthesis of peptide libraries using microwave irradiation. Nature Protocols, 2007, 2, 624-631.	5.5	51
149	Nylon-3 Copolymers that Generate Cell-Adhesive Surfaces Identified by Library Screening. Journal of the American Chemical Society, 2009, 131, 16779-16789.	6.6	51
150	A γ-Amino Acid That Favors 12/10-Helical Secondary Structure in α/γ-Peptides. Journal of the American Chemical Society, 2014, 136, 15046-15053.	6.6	51
151	Detection and Analysis of Chimeric Tertiary Structures by Backbone Thioester Exchange: Packing of an αâ€Helix against an α/βâ€Peptide Helix. Angewandte Chemie - International Edition, 2010, 49, 368-371.	7.2	50
152	New Preorganized Î ³ -Amino Acids as Foldamer Building Blocks. Organic Letters, 2012, 14, 2582-2585.	2.4	49
153	Novel Tripod Amphiphiles for Membrane Protein Analysis. Chemistry - A European Journal, 2013, 19, 15645-15651.	1.7	49
154	An improved tripod amphiphile for membrane protein solubilization. Protein Science, 2000, 9, 2518-2527.	3.1	48
155	Solvent-Dependent Stabilization of the E Configuration of Propargylic Secondary Amides. Organic Letters, 2000, 2, 2335-2338.	2.4	48
156	Origins of the High 14-Helix Propensity of Cyclohexyl-Rigidified Residues in β-Peptides. Organic Letters, 2007, 9, 1801-1804.	2.4	48
157	Correlating antimicrobial activity and model membrane leakage induced by nylon-3 polymers and detergents. Soft Matter, 2015, 11, 6840-6851.	1.2	48
158	Tripod amphiphiles for membrane protein manipulation. Molecular BioSystems, 2010, 6, 89-94.	2.9	44
159	Single-Cell, Time-Resolved Antimicrobial Effects of a Highly Cationic, Random Nylon-3 Copolymer on Live <i>Escherichia coli</i> . ACS Chemical Biology, 2016, 11, 113-120.	1.6	44
160	Quantitative Analysis of Hydrophobically Induced Folding in a Minimal Model System. Journal of the American Chemical Society, 1997, 119, 5041-5042.	6.6	43
161	Comparison of Design Strategies for Promotion of βâ€Peptide 14â€Helix Stability in Water. ChemBioChem, 2008, 9, 2254-2259.	1.3	43
162	Characterization of nanofibers formed by self-assembly of β-peptide oligomers using small angle x-ray scattering. Journal of Chemical Physics, 2008, 129, 095103.	1.2	43

#	Article	IF	CITATIONS
163	Heterogeneous H-Bonding in a Foldamer Helix. Journal of the American Chemical Society, 2015, 137, 6484-6487.	6.6	43
164	Spatial bias in cAMP generation determines biological responses to PTH type 1 receptor activation. Science Signaling, 2021, 14, eabc5944.	1.6	43
165	Comparison of an HXH Three-Center Hydrogen Bond with Alternative Two-Center Hydrogen Bonds in a Model System. Organic Letters, 1999, 1, 11-14.	2.4	42
166	Crystallographic Characterization of 12-Helical Secondary Structure in β-Peptides Containing Side Chain Groups. Journal of the American Chemical Society, 2010, 132, 13879-13885.	6.6	41
167	Spectroscopic characterization of selected ?- sheet hairpin models. Biopolymers, 2002, 67, 233-236.	1.2	40
168	Microwave-Assisted Parallel Synthesis of a 14-Helical β-Peptide Library. ACS Combinatorial Science, 2006, 8, 58-65.	3.3	40
169	Effects of Cyclic vs Acyclic Hydrophobic Subunits on the Chemical Structure and Biological Properties of Nylon-3 Copolymers. ACS Macro Letters, 2013, 2, 753-756.	2.3	40
170	Medium Effects on Minimum Inhibitory Concentrations of Nylon-3 Polymers against E. coli. PLoS ONE, 2014, 9, e104500.	1.1	40
171	Residue-Based Preorganization of BH3-Derived α/β-Peptides: Modulating Affinity, Selectivity and Proteolytic Susceptibility in α-Helix Mimics. ACS Chemical Biology, 2015, 10, 1667-1675.	1.6	40
172	Broad Distribution of Energetically Important Contacts across an Extended Protein Interface. Journal of the American Chemical Society, 2011, 133, 10038-10041.	6.6	39
173	Polymer Chain Length Effects on Fibroblast Attachment on Nylon-3-Modified Surfaces. Biomacromolecules, 2012, 13, 1100-1105.	2.6	39
174	A preorganized β-amino acid bearing a guanidinium side chain and its use in cell-penetrating peptides. Organic and Biomolecular Chemistry, 2015, 13, 5617-5620.	1.5	39
175	Impact of γ-Amino Acid Residue Preorganization on α/γ-Peptide Foldamer Helicity in Aqueous Solution. Journal of the American Chemical Society, 2016, 138, 10766-10769.	6.6	39
176	Macrocyclic Design Strategies for Small, Stable Parallel β-Sheet Scaffolds. Journal of the American Chemical Society, 2009, 131, 7970-7972.	6.6	38
177	Effects of Single α-to-β Residue Replacements on Structure and Stability in a Small Protein: Insights from Quasiracemic Crystallization. Journal of the American Chemical Society, 2016, 138, 6498-6505.	6.6	38
178	(R,R,R)-2,5-Diaminocylohexanecarboxylic Acid, a Building Block for Water-Soluble, Helix-Forming β-Peptides. Journal of Organic Chemistry, 2000, 65, 4766-4769.	1.7	35
179	Distinctive Circular Dichroism Signature for 14-Helix-Bundle Formation by β-Peptides. Organic Letters, 2008, 10, 1799-1802.	2.4	35
180	Nylon-3 Polymers That Enable Selective Culture of Endothelial Cells. Journal of the American Chemical Society, 2013, 135, 16296-16299.	6.6	35

#	Article	IF	CITATIONS
181	Laser Spectroscopy of Conformationally Constrained $\hat{I}\pm/\hat{I}^2$ -Peptides: Ac-ACPC-Phe-NHMe and Ac-Phe-ACPC-NHMe. Journal of Physical Chemistry A, 2010, 114, 1581-1591.	1.1	34
182	Quasiracemic Crystallization as a Tool To Assess the Accommodation of Noncanonical Residues in Nativelike Protein Conformations. Journal of the American Chemical Society, 2012, 134, 2473-2476.	6.6	34
183	Evidence for Phenylalanine Zipper-Mediated Dimerization in the X-ray Crystal Structure of a Magainin 2 Analogue. Journal of the American Chemical Society, 2013, 135, 15738-15741.	6.6	34
184	Differential Impact of β and γ Residue Preorganization on α/β/γ-Peptide Helix Stability in Water. Journal of the American Chemical Society, 2013, 135, 8149-8152.	6.6	34
185	New Charge-Bearing Amino Acid Residues That Promote β-Sheet Secondary Structure. Journal of the American Chemical Society, 2014, 136, 16683-16688.	6.6	34
186	High-resolution structures of a heterochiral coiled coil. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 13144-13149.	3.3	33
187	Ketones from Nickel atalyzed Decarboxylative, Non‣ymmetric Crossâ€Electrophile Coupling of Carboxylic Acid Esters. Angewandte Chemie, 2019, 131, 12209-12213.	1.6	33
188	Diacid Linkers That Promote Parallel β-Sheet Secondary Structure in Water. Journal of the American Chemical Society, 2008, 130, 7839-7841.	6.6	32
189	Biophysical Mimicry of Lung Surfactant Protein B by Random Nylon-3 Copolymers. Journal of the American Chemical Society, 2010, 132, 7957-7967.	6.6	32
190	Improved Glucoseâ€Neopentyl Glycol (GNG) Amphiphiles for Membrane Protein Solubilization and Stabilization. Chemistry - an Asian Journal, 2014, 9, 632-638.	1.7	32
191	Nonadditive Interactions Mediated by Water at Chemically Heterogeneous Surfaces: Nonionic Polar Groups and Hydrophobic Interactions. Journal of the American Chemical Society, 2017, 139, 18536-18544.	6.6	32
192	Use of a Stereochemical Strategy To Probe the Mechanism of Phenol-Soluble Modulin α3 Toxicity. Journal of the American Chemical Society, 2019, 141, 7660-7664.	6.6	32
193	Effects of Amphiphilic Topology on Self-Association in Solution, at the Air-Water Interface, and in the Solid State. Journal of the American Chemical Society, 1995, 117, 4862-4869.	6.6	31
194	Inhibition of Herpes Simplex Virus Type 1 Infection by Cationic Î ² -Peptides. Antimicrobial Agents and Chemotherapy, 2008, 52, 2120-2129.	1.4	31
195	Lyotropic liquid crystalline phases from helical β-peptides as alignment media. Chemical Communications, 2011, 47, 502-504.	2.2	31
196	Improved treatment of cyclic ?-amino acids and successful prediction of ?-peptide secondary structure using a modified force field: AMBER*C. Journal of Computational Chemistry, 2000, 21, 763-773.	1.5	30
197	Two interdependent mechanisms of antimicrobial activity allow for efficient killing in nylon-3-based polymeric mimics of innate immunity peptides. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 2269-2279.	1.4	30
198	G _{q/11} -dependent regulation of endosomal cAMP generation by parathyroid hormone class B GPCR. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 7455-7460.	3.3	30

#	Article	IF	CITATIONS
199	Synthesis of β-Lactams Bearing Functionalized Side Chains from a Readily Available Precursor. Organic Letters, 2008, 10, 5317-5319.	2.4	29
200	Sheetâ€Like Assemblies of Charged Amphiphilic α/βâ€Peptides at the Air–Water Interface. Chemistry - A European Journal, 2011, 17, 14857-14866.	1.7	29
201	Cyclic Constraints on Conformational Flexibility in γ-Peptides: Conformation Specific IR and UV Spectroscopy. Journal of Physical Chemistry A, 2013, 117, 12350-12362.	1.1	29
202	Hydrophobic variants of ganglio-tripod amphiphiles for membrane protein manipulation. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 278-286.	1.4	29
203	Exploration of Diverse Reactive Diad Geometries for Bifunctional Catalysis via Foldamer Backbone Variation. Journal of the American Chemical Society, 2018, 140, 12476-12483.	6.6	29
204	Sequence Dependent Behavior of Amphiphilic β-Peptides on Gold Surfaces. Chemistry of Materials, 2007, 19, 4436-4441.	3.2	28
205	Backbone Modification of a Parathyroid Hormone Receptor-1 Antagonist/Inverse Agonist. ACS Chemical Biology, 2016, 11, 2752-2762.	1.6	28
206	A Cationic Polymer That Shows High Antifungal Activity against Diverse Human Pathogens. Antimicrobial Agents and Chemotherapy, 2017, 61, .	1.4	28
207	Effects of Alternative Side Chain Pairings and Reverse Turn Sequences on Antiparallel Sheet Structure in β-Peptide Hairpins. Organic Letters, 2004, 6, 937-940.	2.4	27
208	Roles of Salt and Conformation in the Biological and Physicochemical Behavior of Protegrin-1 and Designed Analogues: Correlation of Antimicrobial, Hemolytic, and Lipid Bilayer-Perturbing Activitiesâ€. Biochemistry, 2006, 45, 15718-15730.	1.2	27
209	Thermodynamic Analysis of Autonomous Parallel β-Sheet Formation in Water. Journal of the American Chemical Society, 2006, 128, 7148-7149.	6.6	27
210	Catalytic Metathesis of Simple Secondary Amides. Angewandte Chemie - International Edition, 2007, 46, 761-763.	7.2	27
211	Establishing Effective Simulation Protocols for β- and α/β-Peptides. II. Molecular Mechanical (MM) Model for a Cyclic β-Residue. Journal of Physical Chemistry B, 2008, 112, 5439-5448.	1.2	27
212	Evaluation of a Cyclopentane-Based γ-Amino Acid for the Ability to Promote α/γ-Peptide Secondary Structure. Journal of Organic Chemistry, 2013, 78, 12351-12361.	1.7	27
213	Role of Ring-Constrained γ-Amino Acid Residues in α/γ-Peptide Folding: Single-Conformation UV and IR Spectroscopy. Journal of Physical Chemistry A, 2013, 117, 10847-10862.	1.1	27
214	Receptor selectivity from minimal backbone modification of a polypeptide agonist. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115, 12383-12388.	3.3	27
215	Beyond Amphiphilic Balance: Changing Subunit Stereochemistry Alters the Pore-Forming Activity of Nylon-3 Polymers. Journal of the American Chemical Society, 2021, 143, 3219-3230.	6.6	27
216	Highly Stable Pleated‣heet Secondary Structure in Assemblies of Amphiphilic α/βâ€Peptides at the Air–Water Interface. Angewandte Chemie - International Edition, 2010, 49, 716-719.	7.2	25

#	Article	IF	CITATIONS
217	Impact of Strand Number on Parallel β‧heet Stability. Angewandte Chemie - International Edition, 2015, 54, 14336-14339.	7.2	25
218	Screening Nylon-3 Polymers, a New Class of Cationic Amphiphiles, for siRNA Delivery. Molecular Pharmaceutics, 2015, 12, 362-374.	2.3	25
219	Conformation-specific spectroscopy of capped glutamine-containing peptides: role of a single glutamine residue on peptide backbone preferences. Physical Chemistry Chemical Physics, 2016, 18, 11306-11322.	1.3	25
220	Effects of amphiphile topology on aggregation properties: distinctive behavior of contrafacial amphiphiles. Journal of the American Chemical Society, 1993, 115, 9343-9344.	6.6	24
221	Structural Characterization of Peptide Oligomers Containing (1 <i>R</i> ,2 <i>S</i>)â€2â€Aminocyclohexanecarboxylic Acid (<i>cis</i> â€ACHC). European Journal of Organic Chemistry, 2013, 2013, 3464-3469.	1.2	24
222	Structural and functional diversity among agonist-bound states of the GLP-1 receptor. Nature Chemical Biology, 2022, 18, 256-263.	3.9	24
223	Thermodynamic Analysis of βâ€Sheet Secondary Structure by Backbone Thioester Exchange. Angewandte Chemie - International Edition, 2007, 46, 7056-7059.	7.2	23
224	Kinetics of Anionic Ring-Opening Polymerization of Variously Substituted Î ² -Lactams: Homopolymerization and Copolymerization. Macromolecules, 2010, 43, 5618-5626.	2.2	23
225	Use of Backbone Modification To Enlarge the Spatiotemporal Diversity of Parathyroid Hormone Receptor-1 Signaling via Biased Agonism. Journal of the American Chemical Society, 2019, 141, 14486-14490.	6.6	23
226	Synthesis of 4,4-Disubstituted 2-Aminocyclopentanecarboxylic Acid Derivatives and Their Incorporation into 12-Helical Î ² -Peptides. Organic Letters, 2004, 6, 4411-4414.	2.4	22
227	Consequences of Periodic α-to-β ³ Residue Replacement for Immunological Recognition of Peptide Epitopes. ACS Chemical Biology, 2015, 10, 844-854.	1.6	22
228	Helix Propensities of Amino Acid Residues via Thioester Exchange. Journal of the American Chemical Society, 2017, 139, 13292-13295.	6.6	22
229	Preparation of Protectedsyn-α,β-Dialkyl β-Amino Acids That Contain Polar Side Chain Functionalityâ€. Journal of Organic Chemistry, 2003, 68, 6440-6443.	1.7	21
230	A fluorescence polarization assay for identifying ligands that bind to vascular endothelial growth factor. Analytical Biochemistry, 2008, 378, 8-14.	1.1	21
231	Impact of Strand Length on the Stability of Parallelâ€Î²â€Sheet Secondary Structure. Angewandte Chemie - International Edition, 2011, 50, 8735-8738.	7.2	21
232	Mimicking the First Turn of an α-Helix with an Unnatural Backbone: Conformation-Specific IR and UV Spectroscopy of Cyclically Constrained β/γ-Peptides. Journal of Physical Chemistry B, 2014, 118, 8246-8256.	1.2	21
233	Evaluation of the Ser-His Dipeptide, a Putative Catalyst of Amide and Ester Hydrolysis. Organic Letters, 2016, 18, 3518-3521.	2.4	21
234	Dual Inhibition of Human Parainfluenza Type 3 and Respiratory Syncytial Virus Infectivity with a Single Agent. Journal of the American Chemical Society, 2019, 141, 12648-12656.	6.6	21

#	Article	IF	CITATIONS
235	Single-Molecule Force Spectroscopy of β-Peptides That Display Well-Defined Three-Dimensional Chemical Patterns. Journal of the American Chemical Society, 2011, 133, 3981-3988.	6.6	20
236	Thedâ€2ddâ€2 Vertical Triad Is Less Discriminating Than theaâ€2aaâ€2 Vertical Triad in the Antiparallel Coiled-Coil Dimer Motif. Journal of the American Chemical Society, 2012, 134, 2626-2633.	6.6	20
237	Carbohydrate-containing Triton X-100 analogues for membrane protein solubilization and stabilization. Molecular BioSystems, 2013, 9, 626.	2.9	20
238	Quasiracemate Crystal Structures of Magainin 2 Derivatives Support the Functional Significance of the Phenylalanine Zipper Motif. Journal of the American Chemical Society, 2015, 137, 11884-11887.	6.6	20
239	Inhibition of Ice Recrystallization by Nylon-3 Polymers. ACS Macro Letters, 2017, 6, 695-699.	2.3	20
240	Impact of Backbone Pattern and Residue Substitution on Helicity in α/β/γ-Peptides. Journal of the American Chemical Society, 2018, 140, 1394-1400.	6.6	20
241	lterative Nonproteinogenic Residue Incorporation Yields α/βâ€Peptides with a Helix–Loop–Helix Tertiary Structure and High Affinity for VEGF. ChemBioChem, 2017, 18, 291-299.	1.3	19
242	Thermodynamic Scale of β-Amino Acid Residue Propensities for an α-Helix-like Conformation. Journal of the American Chemical Society, 2018, 140, 9396-9399.	6.6	19
243	Retention of Native Quaternary Structure in Racemic Melittin Crystals. Journal of the American Chemical Society, 2019, 141, 7704-7708.	6.6	19
244	A Hendecad Motif Is Preferred for Heterochiral Coiled-Coil Formation. Journal of the American Chemical Society, 2019, 141, 1583-1592.	6.6	19
245	Incorporation of β-Amino Acids Enhances the Antifungal Activity and Selectivity of the Helical Antimicrobial Peptide Aurein 1.2. ACS Chemical Biology, 2017, 12, 2975-2980.	1.6	18
246	Evaluation of βâ€Amino Acid Replacements in Protein Loops: Effects on Conformational Stability and Structure. ChemBioChem, 2018, 19, 604-612.	1.3	18
247	Differential Effects of β ³ ―versus β ² â€Amino Acid Residues on the Helicity and Recognition Properties of Bim BH3â€Derived α/βâ€Peptides. Angewandte Chemie - International Edition, 2018, 57, 13829-13832.	7.2	18
248	Crystallization of bacteriorhodopsin solubilized by a tripod amphiphile. Biochimica Et Biophysica Acta - Proteins and Proteomics, 2005, 1751, 213-216.	1.1	17
249	Development of Potent, Protease-Resistant Agonists of the Parathyroid Hormone Receptor with Broad β Residue Distribution. Journal of Medicinal Chemistry, 2017, 60, 8816-8833.	2.9	17
250	Experimental and computational analysis of cellular interactions with nylonâ€3â€bearing substrates. Journal of Biomedical Materials Research - Part A, 2012, 100A, 2750-2759.	2.1	16
251	Helical secondary structures in 2:1 and 1:2 α/γ-peptide foldamers. Tetrahedron, 2012, 68, 4413-4417.	1.0	16
252	Cationic Side Chain Identity Directs the Hydrophobically Driven Self-Assembly of Amphiphilic β-Peptides in Aqueous Solution. Langmuir, 2021, 37, 3288-3298.	1.6	16

#	Article	IF	CITATIONS
253	Parallel Sheet Secondary Structure in β-Peptides. Angewandte Chemie, 2003, 115, 2504-2507.	1.6	15
254	Association of Helical β-Peptides and their Aggregation Behavior from the Potential of Mean Force in Explicit Solvent. Biophysical Journal, 2009, 96, 4349-4362.	0.2	15
255	Inherent Conformational Preferences of Ac-Gln-Gln-NHBn: Sidechain Hydrogen Bonding Supports a β-Turn in the Gas Phase. Angewandte Chemie - International Edition, 2016, 55, 14618-14622.	7.2	15
256	Conformationally flexible core-bearing detergents with a hydrophobic or hydrophilic pendant: Effect of pendant polarity on detergent conformation and membrane protein stability. Acta Biomaterialia, 2021, 128, 393-407.	4.1	15
257	Engineering Protease-Resistant Peptides to Inhibit Human Parainfluenza Viral Respiratory Infection. Journal of the American Chemical Society, 2021, 143, 5958-5966.	6.6	14
258	An autonomously folding ?-hairpin derived from the human YAP65 WW domain: Attempts to define a minimum ligand-binding motif. Biopolymers, 2005, 80, 303-311.	1.2	13
259	Exploration of Structureâ ^{~^} Activity Relationships among Foldamer Ligands for a Specific Protein Binding Site via Parallel and Split-and-Mix Library Synthesis. ACS Combinatorial Science, 2008, 10, 204-215.	3.3	13
260	Interaction of the Hydrophobic Tip of an Atomic Force Microscope with Oligopeptides Immobilized Using Short and Long Tethers. Langmuir, 2016, 32, 2985-2995.	1.6	12
261	Structure-Guided Improvement of a Dual HPIV3/RSV Fusion Inhibitor. Journal of the American Chemical Society, 2020, 142, 2140-2144.	6.6	11
262	Formation of versus Recruitment to RNA-Rich Condensates: Controlling Effects Exerted by Peptide Side Chain Identity. Journal of the American Chemical Society, 2022, 144, 10386-10395.	6.6	11
263	Strategies for Nonmacrocyclic Polythioether Ligands: New Pentacoordinating Architectures. Angewandte Chemie International Edition in English, 1994, 33, 319-321.	4.4	10
264	Crystallographic Characterization of <i>N</i> Oxide Tripod Amphiphiles. Journal of the American Chemical Society, 2010, 132, 1953-1959.	6.6	10
265	Evidence for small-molecule-mediated loop stabilization in the structure of the isolated Pin1 WW domain. Acta Crystallographica Section D: Biological Crystallography, 2013, 69, 2506-2512.	2.5	10
266	Backbone Modifications of HLA-A2-Restricted Antigens Induce Diverse Binding and T Cell Activation Outcomes. Journal of the American Chemical Society, 2021, 143, 6470-6481.	6.6	10
267	Retention of Coiled-Coil Dimer Formation in the Absence of Ion Pairing at Positions Flanking the Hydrophobic Core. Biochemistry, 2019, 58, 4821-4826.	1.2	9
268	Versatile Open-Source Photoreactor Architecture for Photocatalysis Across the Visible Spectrum. Organic Letters, 2021, 23, 5277-5281.	2.4	9
269	Using Constrained β-Amino Acid Residues to Control β-Peptide Shape and Function. , 2005, , 527-591.		8
270	Hydrophobic Variations of <i>N</i> â€Oxide Amphiphiles for Membrane Protein Manipulation: Importance of Nonâ€hydrocarbon Groups in the Hydrophobic Portion. Chemistry - an Asian Journal, 2014, 9, 110-116.	1.7	8

#	Article	IF	CITATIONS
271	Ammonolysis of anilides promoted by ethylene glycol and phosphoric acid. RSC Advances, 2014, 4, 46840-46843.	1.7	8
272	Peptide-Like Nylon-3 Polymers with Activity against Phylogenetically Diverse, Intrinsically Drug-Resistant Pathogenic Fungi. MSphere, 2018, 3, .	1.3	8
273	Preparation of β ² -Homologous Amino Acids Bearing Polar Side Chains via a Collective Synthesis Strategy. Journal of Organic Chemistry, 2020, 85, 1718-1724.	1.7	8
274	Effects of Single α-to-β Residue Replacements on Recognition of an Extended Segment in a Viral Fusion Protein. ACS Infectious Diseases, 2020, 6, 2017-2022.	1.8	8
275	Reinvestigation of the proposed folding and self-association of the Neuropeptide Head Activator. Protein Science, 2003, 12, 560-566.	3.1	7
276	Differential Effects of β 3 ―versus β 2 â€Amino Acid Residues on the Helicity and Recognition Properties of Bim BH3â€Đerived α/βâ€Peptides. Angewandte Chemie, 2018, 130, 14025-14028.	1.6	7
277	Recognition of Class II MHC Peptide Ligands That Contain β-Amino Acids. Journal of Immunology, 2019, 203, 1619-1628.	0.4	7
278	Impact of Substitution Registry on the Receptorâ€Activation Profiles of Backboneâ€Modified Glucagonâ€like Peptideâ€1 Analogues. ChemBioChem, 2019, 20, 2834-2840.	1.3	7
279	Cationic Homopolymers Inhibit Spore and Vegetative Cell Growth of <i>Clostridioides difficile</i> . ACS Infectious Diseases, 2021, 7, 1236-1247.	1.8	7
280	Comparisons of βâ€Hairpin Propensity Among Peptides with Homochiral or Heterochiral Strands. ChemBioChem, 2021, 22, 2772-2776.	1.3	7
281	Tailoring Reaction Selectivity by Modulating a Catalytic Diad on a Foldamer Scaffold. Journal of the American Chemical Society, 2022, 144, 2225-2232.	6.6	7
282	In Situ Monitoring of Backbone Thioester Exchange by ¹⁹ F NMR. ChemBioChem, 2009, 10, 2177-2181.	1.3	6
283	Catalytic Intramolecular Conjugate Additions of Aldehyde-Derived Enamines to α,β-Unsaturated Esters. Organic Letters, 2020, 22, 4568-4573.	2.4	6
284	Tumor Necrosis Factor-α Trimer Disassembly and Inactivation via Peptide-Small Molecule Synergy. ACS Chemical Biology, 2020, 15, 2116-2124.	1.6	5
285	Diverse Impacts on Prokaryotic and Eukaryotic Membrane Activities from Hydrophobic Subunit Variation Among Nylon-3 Copolymers. ACS Chemical Biology, 2021, 16, 176-184.	1.6	5
286	Trimer-to-Monomer Disruption Mechanism for a Potent, Protease-Resistant Antagonist of Tumor Necrosis Factor-α Signaling. Journal of the American Chemical Society, 2022, 144, 9610-9617.	6.6	5
287	Toward a Soluble Model System for the Amyloid State. Journal of the American Chemical Society, 2017, 139, 16434-16437.	6.6	4
288	Harnessing Noncovalent Interactions to Drive Single-Chain Nanoparticle Formation. Macromolecules, 2020, 53, 8141-8143.	2.2	4

#	Article	IF	CITATIONS
289	Influence of immobilized cations on the thermodynamic signature of hydrophobic interactions at chemically heterogeneous surfaces. Molecular Systems Design and Engineering, 2020, 5, 835-846.	1.7	4
290	Potential Foldamers Based on an <i>ortho-</i> Terphenyl Amino Acid. Organic Letters, 2021, 23, 4855-4859.	2.4	3
291	Local rigidification and possible coacervation of the Escherichia coli DNA by cationic nylon-3 polymers. Biophysical Journal, 2021, 120, 5243-5254.	0.2	3
292	Stable Picodisc Assemblies from Saposin Proteins and Branched Detergents. Biochemistry, 2021, 60, 1108-1119.	1.2	2
293	Neuartige fünffach koordinierende Polythioether â€â€•eine Alternative zu makrocyclischen Chelatbildnern. Angewandte Chemie, 1994, 106, 335-338.	1.6	1
294	Inherent Conformational Preferences of Acâ€Glnâ€Clnâ€NHBn: Sidechain Hydrogen Bonding Supports a βâ€Turn in the Gas Phase. Angewandte Chemie, 2016, 128, 14838-14842.	1.6	1
295	Inside Cover: A New Class of Amphiphiles Bearing Rigid Hydrophobic Groups for Solubilization and Stabilization of Membrane Proteins (Chem. Eur. J. 31/2012). Chemistry - A European Journal, 2012, 18, 9434.9434	1.7	О