Richard L Hyson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2951296/publications.pdf

Version: 2024-02-01

623734 552781 29 701 14 26 citations g-index h-index papers 29 29 29 374 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	Neural Networks in Health and Disease. , 2021, , 178-186.		О
2	Network dynamics underlie learning and performance of birdsong. Current Opinion in Neurobiology, 2020, 64, 119-126.	4.2	3
3	Intrinsic physiological properties underlie auditory response diversity in the avian cochlear nucleus. Journal of Neurophysiology, 2019, 121, 908-927.	1.8	6
4	Female zebra finches do not sing yet share neural pathways necessary for singing in males. Journal of Comparative Neurology, 2019, 527, 843-855.	1.6	35
5	Experience-Dependent Intrinsic Plasticity During Auditory Learning. Journal of Neuroscience, 2019, 39, 1206-1221.	3.6	19
6	Intrinsic physiology of inhibitory neurons changes over auditory development. Journal of Neurophysiology, 2018, 119, 290-304.	1.8	5
7	Interhemispheric dominance switching in a neural network model for birdsong. Journal of Neurophysiology, 2018, 120, 1186-1197.	1.8	3
8	Orthogonal topography in the parallel input architecture of songbird HVC. Journal of Comparative Neurology, 2017, 525, 2133-2151.	1.6	8
9	A distributed neural network model for the distinct roles of medial and lateral HVC in zebra finch song production. Journal of Neurophysiology, 2017, 118, 677-692.	1.8	10
10	Neuronal Intrinsic Physiology Changes During Development of a Learned Behavior. ENeuro, 2017, 4, ENEURO.0297-17.2017.	1.9	23
11	A role for inhibition in deafness-induced plasticity of the avian auditory brainstem. Neuroscience, 2016, 327, 10-19.	2.3	3
12	Activation of Metabotropic Glutamate Receptors Regulates Ribosomes of Cochlear Nucleus Neurons. PLoS ONE, 2014, 9, e111243.	2.5	5
13	Independent Premotor Encoding of the Sequence and Structure of Birdsong in Avian Cortex. Journal of Neuroscience, 2014, 34, 16821-16834.	3.6	31
14	Electrophysiological characterization and computational models of HVC neurons in the zebra finch. Journal of Neurophysiology, 2013, 110, 1227-1245.	1.8	37
15	Axial Organization of a Brain Region That Sequences a Learned Pattern of Behavior. Journal of Neuroscience, 2012, 32, 9312-9322.	3.6	19
16	In vivo analysis of the role of metabotropic glutamate receptors in the afferent regulation of chick cochlear nucleus neurons. Hearing Research, 2011, 272, 49-57.	2.0	9
17	Effects of lithium and deafferentation on expression of glycogen synthase kinase-3β, NFκB, β-catenin and pCreb in the chick cochlear nucleus. Brain Research, 2008, 1203, 18-25.	2.2	6
18	Localization of CB1 cannabinoid receptor mRNA in the brain of the chick (Gallus domesticus). Brain Research, 2008, 1245, 61-73.	2.2	12

#	Article	IF	CITATIONS
19	The analysis of interaural time differences in the chick brain stem. Physiology and Behavior, 2005, 86, 297-305.	2.1	42
20	Group I and II metabotropic glutamate receptors are necessary for the activity-dependent regulation of ribosomes in chick auditory neurons. Brain Research, 2004, 1014, 110-119.	2.2	14
21	Rapid deafferentation-induced upregulation of bcl-2 mRNA in the chick cochlear nucleus. Molecular Brain Research, 2002, 99, 67-74.	2.3	24
22	Activation of metabotropic glutamate receptors is necessary for transneuronal regulation of ribosomes in chick auditory neurons. Brain Research, 1998, 809, 214-220.	2.2	19
23	Effect of GABA on the processing of interaural time differences in nucleus laminaris neurons in the chick. European Journal of Neuroscience, 1998, 10, 3438-3450.	2.6	31
24	Transneuronal regulation of ribosomes after blockade of ionotropic excitatory amino acid receptors. Brain Research, 1997, 749, 61-70.	2.2	13
25	Differences in expression of GABAA receptor subunits, but not benzodiazepine binding, in the chick brainstem auditory system. Journal of Molecular Neuroscience, 1997, 8, 193-205.	2.3	3
26	Activity-dependent regulation of a ribosomal RNA epitope in the chick cochlear nucleus. Brain Research, 1995, 672, 196-204.	2.2	34
27	A depolarizing inhibitory response to GABA in brainstem auditory neurons of the chick. Brain Research, 1995, 677, 117-126.	2.2	90
28	Glutamate-stimulated phosphatidylinositol metabolism in the avian cochlear nucleus. Neuroscience Letters, 1994, 168, 163-166.	2.1	24
29	Afferent regulation of neurons in the brain stem auditory system. Journal of Neurobiology, 1990, 21, 169-196.	3.6	173