
Sarah J Richardson

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2950544/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	100 YEARS OF INSULIN: Pancreas pathology in type 1 diabetes: an evolving story. Journal of Endocrinology, 2022, 252, R41-R57.	2.6	23
2	Editorial: Immunopathology of Type 1 Diabetes. Frontiers in Immunology, 2022, 13, 852963.	4.8	0
3	Circulating C-Peptide Levels in Living Children and Young People and Pancreatic Î ² -Cell Loss in Pancreas Donors Across Type 1 Diabetes Disease Duration. Diabetes, 2022, 71, 1591-1596.	0.6	12
4	Temporal regulation of interferon signalling in human EndoC-βH1 cells. Journal of Molecular Endocrinology, 2022, 69, 299-313.	2.5	3
5	Presumption of guilt for T cells in type 1 diabetes: lead culprits or partners in crime depending on age of onset?. Diabetologia, 2021, 64, 15-25.	6.3	37
6	Islet expression of type I interferon response sensors is associated with immune infiltration and viral infection in type 1 diabetes. Science Advances, 2021, 7, .	10.3	47
7	Identification and characterisation of tertiary lymphoid organs in human type 1 diabetes. Diabetologia, 2021, 64, 1626-1641.	6.3	21
8	Altered Î ² -Cell Prohormone Processing and Secretion in Type 1 Diabetes. Diabetes, 2021, 70, 1038-1050.	0.6	28
9	Investigation of the utility of the 1.1B4 cell as a model human beta cell line for study of persistent enteroviral infection. Scientific Reports, 2021, 11, 15624.	3.3	7
10	Localization of enteroviral RNA within the pancreas in donors with T1D and T1D-associated autoantibodies. Cell Reports Medicine, 2021, 2, 100371.	6.5	16
11	HLA Class I Upregulation and Antiviral Immune Responses in Graves Disease. Journal of Clinical Endocrinology and Metabolism, 2021, 106, 1763-1774.	3.6	9
12	Expression of CD47 in the pancreatic βâ€cells of people with recentâ€onset type 1 diabetes varies according to disease endotype. Diabetic Medicine, 2021, 38, e14724.	2.3	7
13	Upregulation of HLA Class I and Antiviral Tissue Responses in Hashimoto's Thyroiditis. Thyroid, 2020, 30, 432-442.	4.5	10
14	In Situ Analysis Reveals That CFTR Is Expressed in Only a Small Minority of β-Cells in Normal Adult Human Pancreas. Journal of Clinical Endocrinology and Metabolism, 2020, 105, 1366-1374.	3.6	26
15	Type 1 Diabetes: Interferons and the Aftermath of Pancreatic Beta-Cell Enteroviral Infection. Microorganisms, 2020, 8, 1419.	3.6	17
16	Vitamin-D-Binding Protein Contributes to the Maintenance of α Cell Function and Glucagon Secretion. Cell Reports, 2020, 31, 107761.	6.4	19
17	Studies of insulin and proinsulin in pancreas and serum support the existence of aetiopathological endotypes of type 1 diabetes associated with age at diagnosis. Diabetologia, 2020, 63, 1258-1267.	6.3	98
18	Reduced Expression of the Co-regulator TLE1 in Type 2 Diabetes Is Associated with Increased Islet α-Cell Number. Endocrinology, 2020, 161, .	2.8	8

Sarah J Richardson

#	Article	IF	CITATIONS
19	The inducible β5i proteasome subunit contributes to proinsulin degradation in GRP94-deficient β-cells and is overexpressed in type 2 diabetes pancreatic islets. American Journal of Physiology - Endocrinology and Metabolism, 2020, 318, E892-E900.	3.5	7
20	An integrated multi-omics approach identifies the landscape of interferon-α-mediated responses of human pancreatic beta cells. Nature Communications, 2020, 11, 2584.	12.8	87
21	Cellular stressors may alter islet hormone cell proportions by moderation of alternative splicing patterns. Human Molecular Genetics, 2019, 28, 2763-2774.	2.9	16
22	Large enteroviral vaccination studies to prevent type 1 diabetes should be well founded and rely on scientific evidence. Reply to Skog O, Klingel K, Roivainen M et al [letter]. Diabetologia, 2019, 62, 1100-1103.	6.3	4
23	HLA Class II Antigen Processing and Presentation Pathway Components Demonstrated by Transcriptome and Protein Analyses of Islet β-Cells From Donors With Type 1 Diabetes. Diabetes, 2019, 68, 988-1001.	0.6	90
24	Offspring of Mice Exposed to a Low-Protein Diet in Utero Demonstrate Changes in mTOR Signaling in Pancreatic Islets of Langerhans, Associated with Altered Glucagon and Insulin Expression and a Lower β-Cell Mass. Nutrients, 2019, 11, 605.	4.1	20
25	Rationale for enteroviral vaccination and antiviral therapies in human type 1 diabetes. Diabetologia, 2019, 62, 744-753.	6.3	65
26	What the HLA-II—Classical and Non-classical HLA Class I and Their Potential Roles in Type 1 Diabetes. Current Diabetes Reports, 2019, 19, 159.	4.2	30
27	The transcription factor STAT6 plays a critical role in promoting beta cell viability and is depleted in islets of individuals with type 1 diabetes. Diabetologia, 2019, 62, 87-98.	6.3	14
28	A novel rat CVB1-VP1 monoclonal antibody 3A6 detects a broad range of enteroviruses. Scientific Reports, 2018, 8, 33.	3.3	18
29	Molecular Pathways for Immune Recognition of Preproinsulin Signal Peptide in Type 1 Diabetes. Diabetes, 2018, 67, 687-696.	0.6	35
30	Pancreas Pathology During the Natural History of Type 1 Diabetes. Current Diabetes Reports, 2018, 18, 124.	4.2	39
31	The Effect of Age on the Progression and Severity of Type 1 Diabetes: Potential Effects on Disease Mechanisms. Current Diabetes Reports, 2018, 18, 115.	4.2	32
32	Fifty years of pancreatic islet pathology in human type 1 diabetes: insights gained and progress made. Diabetologia, 2018, 61, 2499-2506.	6.3	52
33	PDL1 is expressed in the islets of people with type 1 diabetes and is up-regulated by interferons-α and-γ via IRF1 induction. EBioMedicine, 2018, 36, 367-375.	6.1	138
34	Enteroviral infections in the pathogenesis of type 1 diabetes: new insights for therapeutic intervention. Current Opinion in Pharmacology, 2018, 43, 11-19.	3.5	59
35	Unexpected subcellular distribution of a specific isoform of the Coxsackie and adenovirus receptor, CAR-SIV, in human pancreatic beta cells. Diabetologia, 2018, 61, 2344-2355.	6.3	60
36	C-Peptide Decline in Type 1 Diabetes Has Two Phases: An Initial Exponential Fall and a Subsequent Stable Phase. Diabetes Care, 2018, 41, 1486-1492.	8.6	81

SARAH J RICHARDSON

#	Article	IF	CITATIONS
37	Abnormal neutrophil signature in the blood and pancreas of presymptomatic and symptomatic type 1 diabetes. JCI Insight, 2018, 3, .	5.0	85
38	Re-addressing the 2013 consensus guidelines for the diagnosis of insulitis in human type 1 diabetes: is change necessary?. Diabetologia, 2017, 60, 753-755.	6.3	7
39	Germinal centre frequency is decreased in pancreatic lymph nodes from individuals with recent-onset type 1 diabetes. Diabetologia, 2017, 60, 1294-1303.	6.3	13
40	Detection and localization of viral infection in the pancreas of patients with type 1 diabetes using short fluorescently-labelled oligonucleotide probes. Oncotarget, 2017, 8, 12620-12636.	1.8	25
41	Spatiotemporal Dynamics of Insulitis in Human Type 1 Diabetes. Frontiers in Physiology, 2016, 7, 633.	2.8	16
42	Changing perspectives on the progression of type 1 diabetes. Practical Diabetes, 2016, 33, 118-120.	0.3	1
43	miR, miR in the Cell, Does the Virus Control Them All?. Diabetes, 2016, 65, 823-825.	0.6	0
44	Central nervous system infection following vertical transmission of Coxsackievirus B4 in mice. Pathogens and Disease, 2016, 74, ftw096.	2.0	4
45	Islet cell hyperexpression of HLA class I antigens: a defining feature in type 1 diabetes. Diabetologia, 2016, 59, 2448-2458.	6.3	214
46	An Isochemogenic Set of Inhibitors To Define the Therapeutic Potential of Histone Deacetylases in β-Cell Protection. ACS Chemical Biology, 2016, 11, 363-374.	3.4	78
47	Differential Insulitic Profiles Determine the Extent of β-Cell Destruction and the Age at Onset of Type 1 Diabetes. Diabetes, 2016, 65, 1362-1369.	0.6	235
48	Relative sensitivity of immunohistochemistry, multiple reaction monitoring mass spectrometry, in situ hybridization and PCR to detect Coxsackievirus B1 in A549 cells. Journal of Clinical Virology, 2016, 77, 21-28.	3.1	23
49	Differential cell autonomous responses determine the outcome of coxsackievirus infections in murine pancreatic \hat{I}_{\pm} and \hat{I}^2 cells. ELife, 2015, 4, e06990.	6.0	53
50	Detection of a Low-Grade Enteroviral Infection in the Islets of Langerhans of Living Patients Newly Diagnosed With Type 1 Diabetes. Diabetes, 2015, 64, 1682-1687.	0.6	255
51	The subcellular distribution of cyclin-D1 and cyclin-D3 within human islet cells varies according to the status of the pancreas donor. Diabetologia, 2015, 58, 2056-2063.	6.3	4
52	ls Type 1 Diabetes "Going Viral�. Diabetes, 2014, 63, 2203-2205.	0.6	17
53	Islet inflammation in human type 1 diabetes mellitus. IUBMB Life, 2014, 66, 723-734.	3.4	68
54	Evaluation of the fidelity of immunolabelling obtained with clone 5D8/1, a monoclonal antibody directed against the enteroviral capsid protein, VP1, in human pancreas. Diabetologia, 2014, 57, 392-401.	6.3	35

SARAH J RICHARDSON

#	Article	IF	CITATIONS
55	Pancreatic Pathology in Type 1 Diabetes Mellitus. Endocrine Pathology, 2014, 25, 80-92.	9.0	64
56	Detection of enterovirus in the islet cells of patients with type 1 diabetes: what do we learn from immunohistochemistry? Reply to Hansson SF, Korsgren S, Pontén F et al [letter]. Diabetologia, 2014, 57, 647-649.	6.3	12
57	Infection of human islets of langerhans with two strains of coxsackie B virus serotype 1: Assessment of virus replication, degree of cell death and induction of genes involved in the innate immunity pathway. Journal of Medical Virology, 2014, 86, 1402-1411.	5.0	39
58	Enteroviruses as causative agents in type 1 diabetes: loose ends or lost cause?. Trends in Endocrinology and Metabolism, 2014, 25, 611-619.	7.1	53
59	Blood and Islet Phenotypes Indicate Immunological Heterogeneity in Type 1 Diabetes. Diabetes, 2014, 63, 3835-3845.	0.6	189
60	Induction of an Antiviral State and Attenuated Coxsackievirus Replication in Type III Interferon-Treated Primary Human Pancreatic Islets. Journal of Virology, 2013, 87, 7646-7654.	3.4	36
61	Singleâ€agent lenalidomide in relapsed/refractory mantle cell lymphoma: results from a <scp>UK</scp> phase II study suggest activity and possible gender differences. British Journal of Haematology, 2012, 159, 154-163.	2.5	85
62	Immunopathology of the human pancreas in type-I diabetes. Seminars in Immunopathology, 2011, 33, 9-21.	6.1	74
63	Use of antisera directed against dsRNA to detect viral infections in formalin-fixed paraffin-embedded tissue. Journal of Clinical Virology, 2010, 49, 180-185.	3.1	30
64	Physiological doses of cannabinoids do not adversely affect MCL viability. Leukemia and Lymphoma, 2007, 48, 1855-1857.	1.3	5
65	ZAP-70 expression is associated with enhanced ability to respond to migratory and survival signals in B-cell chronic lymphocytic leukemia (B-CLL). Blood, 2006, 107, 3584-3592.	1.4	169
66	Solution Structure of Prosurvival Mcl-1 and Characterization of Its Binding by Proapoptotic BH3-only Ligands. Journal of Biological Chemistry, 2005, 280, 4738-4744.	3.4	187