
Antti M Kiviniemi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2950484/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cardiovascular responses to dynamic and static upper-body exercise in a cold environment in coronary artery disease patients. European Journal of Applied Physiology, 2022, 122, 223-232.	2.5	3
2	MiR-185-5p regulates the development of myocardial fibrosis. Journal of Molecular and Cellular Cardiology, 2022, 165, 130-140.	1.9	12
3	Central aortic hemodynamics following acute lower and upper-body exercise in a cold environment among patients with coronary artery disease. Scientific Reports, 2021, 11, 2550.	3.3	6
4	Resistin is a risk factor for all-cause mortality in elderly Finnish population: A prospective study in the OPERA cohort. PLoS ONE, 2021, 16, e0248015.	2.5	5
5	Accumulation patterns of sedentary time and breaks and their association with cardiometabolic health markers in adults. Scandinavian Journal of Medicine and Science in Sports, 2021, 31, 1489-1507.	2.9	18
6	Genetic contributions to the expression of acquired causes of cardiac hypertrophy in non-ischemic sudden cardiac death victims. Scientific Reports, 2021, 11, 11171.	3.3	1
7	Prognostic value of heart rate variability in patients with coronary artery disease in the current treatment era. PLoS ONE, 2021, 16, e0254107.	2.5	10
8	Abdominal aorta plaques are better in predicting future cardiovascular events compared to carotid intima-media thickness: A 20-year prospective study. Atherosclerosis, 2021, 330, 36-42.	0.8	8
9	Temporal variability of Tâ€wave morphology and risk of sudden cardiac death in patients with coronary artery disease. Annals of Noninvasive Electrocardiology, 2021, 26, e12830.	1.1	4
10	Compositional Associations of Sleep and Activities within the 24-h Cycle with Cardiometabolic Health Markers in Adults. Medicine and Science in Sports and Exercise, 2021, 53, 324-332.	0.4	28
11	Increased Beat-to-Beat Variability of T-Wave Heterogeneity Measured From Standard 12-Lead Electrocardiogram Is Associated With Sudden Cardiac Death: A Case–Control Study. Frontiers in Physiology, 2020, 11, 1045.	2.8	6
12	Early Growth Patterns and Cardiac Structure and Function at Midlife: Northern Finland 1966 Birth Cohort Study. Journal of Pediatrics, 2020, 221, 151-158.e1.	1.8	4
13	Physical Activity and the Risk for Sudden Cardiac Death in Patients With Coronary Artery Disease. Circulation: Arrhythmia and Electrophysiology, 2020, 13, e007908.	4.8	7
14	Gender differences in prevalence and prognostic value of fragmented QRS complex. Journal of Electrocardiology, 2020, 61, 1-9.	0.9	4
15	Peptide hormones and risk for future cardiovascular events among prediabetics: a 20-year follow-up in the OPERA study. Annals of Medicine, 2020, 52, 85-93.	3.8	6
16	Endothelial function in response to exercise in the cold in patients with coronary artery disease. Clinical Physiology and Functional Imaging, 2020, 40, 245-256.	1.2	7
17	Electrocardiographic associations with myocardial fibrosis among sudden cardiac death victims. Heart, 2020, 106, 1001-1006.	2.9	26
18	Prognostic significance of Pâ€wave morphology in patients with coronary artery disease. Journal of Cardiovascular Electrophysiology, 2019, 30, 2051-2060.	1.7	4

Ανττι Μ Κινινιεμι

#	Article	IF	CITATIONS
19	High Home Blood Pressure Variability Associates With Exaggerated Blood Pressure Response to Cold Stress. American Journal of Hypertension, 2019, 32, 538-546.	2.0	7
20	Physical activity is associated with cardiac autonomic function in adolescent men. PLoS ONE, 2019, 14, e0222121.	2.5	16
21	Postexercise Heart Rate Recovery in Adults Born Preterm. Journal of Pediatrics, 2019, 214, 89-95.e3.	1.8	6
22	Associations of fitness and physical activity with orthostatic responses of heart rate and blood pressure at midlife. Scandinavian Journal of Medicine and Science in Sports, 2019, 29, 874-885.	2.9	1
23	Intensity and temporal patterns of physical activity and cardiovascular disease risk in midlife. Preventive Medicine, 2019, 124, 33-41.	3.4	27
24	Prediabetes and Risk for Cardiac Death Among Patients With Coronary Artery Disease: The ARTEMIS Study. Diabetes Care, 2019, 42, 1319-1325.	8.6	31
25	Recovery of rate-pressure product and cardiac mortality in coronary artery disease patients with type 2 diabetes. Diabetes Research and Clinical Practice, 2019, 150, 150-157.	2.8	8
26	Home Monitoring of Heart Rate as a Predictor of Imminent Cardiovascular Events. Frontiers in Physiology, 2019, 10, 341.	2.8	7
27	Cardiac Autonomic Function in Adults Born Preterm. Journal of Pediatrics, 2019, 208, 96-103.e4.	1.8	15
28	Childhood growth patterns and cardiovascular autonomic modulation in midlife: Northern Finland 1966 Birth Cohort Study. International Journal of Obesity, 2019, 43, 2264-2272.	3.4	3
29	Musculoskeletal pains and cardiovascular autonomic function in the general Northern Finnish population. BMC Musculoskeletal Disorders, 2019, 20, 45.	1.9	5
30	Response to Comment on Kiviniemi et al. Prediabetes and Risk for Cardiac Death Among Patients With Coronary Artery Disease: The ARTEMIS Study. Diabetes Care 2019;42:1319–1325. Diabetes Care, 2019, 42, e195-e195.	8.6	0
31	Effect of polycystic ovary syndrome on cardiac autonomic function at a late fertile age: a prospective Northern Finland Birth Cohort 1966 study. BMJ Open, 2019, 9, e033780.	1.9	6
32	Prolonged bouts of sedentary time and cardiac autonomic function in midlife. Translational Sports Medicine, 2019, 2, 341-350.	1.1	9
33	Are 15-Year Trajectories of Low Back Pain and Sciatica Associated With Cardiovascular Autonomic Function in the General Population?. Spine, 2019, 44, E1325-E1335.	2.0	3
34	Impaired cardiac autonomic regulation and long-term risk of atrial fibrillation in patients with coronary artery disease. Heart Rhythm, 2018, 15, 334-340.	0.7	10
35	Effect of Changes in Physical Activity on Risk for Cardiac Death in Patients With Coronary Artery Disease. American Journal of Cardiology, 2018, 121, 143-148.	1.6	42
36	Fragmented QRS complex as a predictor of exerciseâ€related sudden cardiac death. Journal of Cardiovascular Electrophysiology, 2018, 29, 55-60.	1.7	13

Ανττι Μ Κινινιεμι

#	Article	IF	CITATIONS
37	Type 2 diabetes and coronary artery disease: Preserved ejection fraction and sudden cardiac death. Heart Rhythm, 2018, 15, 1450-1456.	0.7	35
38	Effects of a Two-Year Home-Based Exercise Training Program on Oxidized LDL and HDL Lipids in Coronary Artery Disease Patients with and without Type-2 Diabetes. Antioxidants, 2018, 7, 144.	5.1	10
39	Biomarkers as predictors of sudden cardiac death in coronary artery disease patients with preserved left ventricular function (ARTEMIS study). PLoS ONE, 2018, 13, e0203363.	2.5	17
40	Effect of passive heat exposure on cardiac autonomic function in healthy children. European Journal of Applied Physiology, 2018, 118, 2233-2240.	2.5	4
41	Cardiovascular responses to cold and submaximal exercise in patients with coronary artery disease. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R768-R776.	1.8	15
42	Depressive Symptoms and Risk for Sudden Cardiac Death in Stable Coronary Artery Disease. American Journal of Cardiology, 2018, 122, 749-755.	1.6	10
43	Genetic loci associated with heart rate variability and their effects on cardiac disease risk. Nature Communications, 2017, 8, 15805.	12.8	95
44	Leptin predicts short-term major adverse cardiac events in patients with coronary artery disease. Annals of Medicine, 2017, 49, 448-454.	3.8	28
45	Association of sST2 and hs-CRP levels with new-onset atrial fibrillation in coronary artery disease. International Journal of Cardiology, 2017, 248, 173-178.	1.7	43
46	Fitness, Fatness, Physical Activity, and Autonomic Function in Midlife. Medicine and Science in Sports and Exercise, 2017, 49, 2459-2468.	0.4	30
47	Association between Birth Characteristics and Cardiovascular Autonomic Function at Mid-Life. PLoS ONE, 2016, 11, e0161604.	2.5	9
48	Hypertension Does Not Alter the Increase in Cardiac Baroreflex Sensitivity Caused by Moderate Cold Exposure. Frontiers in Physiology, 2016, 7, 204.	2.8	11
49	Long-term survival among patients with coronary angioplasty with drug eluting stent for the treatment of unprotected left main stenosis compared to coronary artery bypass grafting. International Journal of Cardiology, 2016, 225, 47-49.	1.7	3
50	Lifelong Physical Activity and Cardiovascular Autonomic Function in Midlife. Medicine and Science in Sports and Exercise, 2016, 48, 1506-1513.	0.4	13
51	Usefulness of Highly Sensitive Troponin as a Predictor of Short-Term Outcome in Patients With Diabetes Mellitus and Stable Coronary Artery Disease (from the ARTEMIS Study). American Journal of Cardiology, 2016, 117, 515-521.	1.6	19
52	Multi-lag HRV analysis discriminates disease progression of post-infarct people with no diabetes versus diabetes. , 2015, 2015, 2367-70.		5
53	Effects of Physical Activity and Exercise Training on Cardiovascular Risk in Coronary Artery Disease Patients With and Without Type 2 Diabetes. Diabetes Care, 2015, 38, 706-715.	8.6	44
54	Associations between heart rate variability, metabolic syndrome risk factors, and insulin resistance. Applied Physiology, Nutrition and Metabolism, 2015, 40, 734-740.	1.9	20

Ανττι Μ Κινινιεμι

#	Article	IF	CITATIONS
55	ECG-derived respiration methods: Adapted ICA and PCA. Medical Engineering and Physics, 2015, 37, 512-517.	1.7	17
56	Exercise Capacity and Heart Rate Responses to Exercise asÂPredictors of Short-Term Outcome Among Patients WithÂStable Coronary Artery Disease. American Journal of Cardiology, 2015, 116, 1495-1501.	1.6	15
57	Cardiac Repolarization and Autonomic Regulation during Short-Term Cold Exposure in Hypertensive Men: An Experimental Study. PLoS ONE, 2014, 9, e99973.	2.5	36
58	Effects of bright light treatment on psychomotor speed in athletes. Frontiers in Physiology, 2014, 5, 184.	2.8	13
59	Impact and management of physiological calibration in spectral analysis of blood pressure variability. Frontiers in Physiology, 2014, 5, 473.	2.8	7
60	Exercise capacity is associated with endothelin-1 release during emotional excitement in coronary artery disease patients. American Journal of Physiology - Heart and Circulatory Physiology, 2014, 307, H391-H396.	3.2	4
61	Cardiac Autonomic Function and High-Intensity Interval Training in Middle-Age Men. Medicine and Science in Sports and Exercise, 2014, 46, 1960-1967.	0.4	61
62	Determinants and Prognostic Value of Cardiovascular Autonomic Function in Coronary Artery Disease Patients With and Without Type 2 Diabetes. Diabetes Care, 2014, 37, 286-294.	8.6	30
63	Heart Rate Variability Findings as a Predictor of Atrial Fibrillation in Middleâ€Aged Population. Journal of Cardiovascular Electrophysiology, 2014, 25, 719-724.	1.7	41
64	Heart rate variability and the metabolic syndrome: a systematic review of the literature. Diabetes/Metabolism Research and Reviews, 2014, 30, 784-793.	4.0	78
65	Myocardial blood flow and its transit time, oxygen utilization, and efficiency of highly endurance-trained human heart. Basic Research in Cardiology, 2014, 109, 413.	5.9	33
66	Effects of Exercise Rehabilitation on Cardiac Electrical Instability Assessed by T-Wave Alternans During Ambulatory Electrocardiogram Monitoring in Coronary Artery Disease Patients Without and With Diabetes Mellitus. American Journal of Cardiology, 2014, 114, 832-837.	1.6	16
67	Prognostic Significance of Impaired Baroreflex Sensitivity Assessed from Phase IV of the Valsalva Maneuver in a Population-Based Sample of Middle-Aged Subjects. American Journal of Cardiology, 2014, 114, 571-576.	1.6	27
68	Acute post-exercise change in blood pressure and exercise training response in patients with coronary artery disease. Frontiers in Physiology, 2014, 5, 526.	2.8	19
69	Heart rate variability in sciatica patients referred to spine surgery: a case control study. BMC Musculoskeletal Disorders, 2013, 14, 149.	1.9	16
70	Impact of type 2 diabetes on cardiac autonomic responses to sympathetic stimuli in patients with coronary artery disease. Autonomic Neuroscience: Basic and Clinical, 2013, 179, 142-147.	2.8	8
71	Diabetes and Technology for Increased Activity Study: The Effects of Exercise and Technology on Heart Rate Variability and Metabolic Syndrome Risk Factors. Frontiers in Endocrinology, 2013, 4, 121.	3.5	22
72	Peak exercise capacity prediction from a submaximal exercise test in coronary artery disease patients. Frontiers in Physiology, 2013, 4, 243.	2.8	4

ΑΝΤΤΙ Μ ΚΙVINIEΜΙ

#	Article	IF	CITATIONS
73	Heart rate variability during static and dynamic breath-hold dives in elite divers. Autonomic Neuroscience: Basic and Clinical, 2012, 169, 95-101.	2.8	21
74	Determinants of heart rate recovery in coronary artery disease patients with and without type 2 diabetes. Autonomic Neuroscience: Basic and Clinical, 2012, 171, 79-84.	2.8	6
75	Identifying increased risk of post-infarct people with diabetes using multi-lag Tone-Entropy analysis. , 2012, 2012, 25-8.		5
76	Effects of habitual physical activity on response to endurance training. Journal of Sports Sciences, 2012, 30, 563-569.	2.0	44
77	Effects of exercise prescription on daily physical activity and maximal exercise capacity in coronary artery disease patients with and without type 2 diabetes. Clinical Physiology and Functional Imaging, 2012, 32, 445-454.	1.2	26
78	Autonomic Cardiac Regulation During Spontaneous Nocturnal Hypoglycemia in Patients With Type 1 Diabetes. Diabetes Care, 2012, 35, 1585-1590.	8.6	31
79	Self-Rated Mental Stress and Exercise Training Response in Healthy Subjects. Frontiers in Physiology, 2012, 3, 51.	2.8	15
80	Long-term outcome of patients with chronotropic incompetence after an acute myocardial infarction. Annals of Medicine, 2011, 43, 33-39.	3.8	11
81	Heart rate dynamics after exercise in cardiac patients with and without type 2 diabetes. Frontiers in Physiology, 2011, 2, 57.	2.8	11
82	Risk factors of self-terminating and perpetuating ventricular tachyarrhythmias in post-infarction patients with moderately depressed left ventricular function, a CARISMA sub-analysis. Europace, 2011, 13, 1604-1611.	1.7	17
83	Sympatho-vagal interaction in the recovery phase of exercise. Clinical Physiology and Functional Imaging, 2011, 31, 272-281.	1.2	37
84	α-Adrenergic effects on low-frequency oscillations in blood pressure and R-R intervals during sympathetic activation. Experimental Physiology, 2011, 96, 718-735.	2.0	13
85	QRS-T morphology measured from exercise electrocardiogram as a predictor of cardiac mortality. Europace, 2011, 13, 701-707.	1.7	22
86	Dynamics and Rateâ€Dependence of the Spatial Angle between Ventricular Depolarization and Repolarization Wave Fronts during Exercise ECG. Annals of Noninvasive Electrocardiology, 2010, 15, 264-275.	1.1	13
87	Physical activity and heart rate variability measured simultaneously during waking hours. American Journal of Physiology - Heart and Circulatory Physiology, 2010, 298, H874-H880.	3.2	59
88	Daily Exercise Prescription on the Basis of HR Variability among Men and Women. Medicine and Science in Sports and Exercise, 2010, 42, 1355-1363.	0.4	126
89	Sudden cardiac death after myocardial infarction in patients with type 2 diabetes. Heart Rhythm, 2010, 7, 1396-1403.	0.7	83
90	Frequency of slow oscillations in arterial pressure and R–R intervals during muscle metaboreflex activation. Autonomic Neuroscience: Basic and Clinical, 2010, 152, 88-95.	2.8	7

ΑΝΤΤΙ Μ ΚΙVINIEΜΙ

#	Article	IF	CITATIONS
91	Low-frequency oscillations in $R\hat{a}\in R$ interval and blood pressure across the continuum of cardiovascular risk. Autonomic Neuroscience: Basic and Clinical, 2010, 158, 92-99.	2.8	10
92	Time-frequency representation of cardiovascular signals during handgrip exercise. , 2009, 2009, 1762-5.		4
93	Improved Stratification of Autonomic Regulation for risk prediction in post-infarction patients with preserved left ventricular function (ISAR-Risk). European Heart Journal, 2009, 30, 576-583.	2.2	167
94	Individual responses to aerobic exercise: The role of the autonomic nervous system. Neuroscience and Biobehavioral Reviews, 2009, 33, 107-115.	6.1	198
95	Acetylcholine receptor M2 gene variants, heart rate recovery, and risk of cardiac death after an acute myocardial infarction. Annals of Medicine, 2009, 41, 197-207.	3.8	13
96	Muscle sympathetic nerve activity at rest compared to exercise tolerance. European Journal of Applied Physiology, 2008, 102, 533-538.	2.5	11
97	Respiratory sinus arrhythmia as a predictor of sudden cardiac death after myocardial infarction. Annals of Medicine, 2008, 40, 376-382.	3.8	21
98	Recovery Pattern of Baroreflex Sensitivity after Exercise. Medicine and Science in Sports and Exercise, 2008, 40, 864-870.	0.4	69
99	Association of acetylcholine receptor M2 (CHRM2) gene polymorphisms with heart rate recovery after exercise among patients with a recent myocardial infarction. International Journal of Cardiology, 2007, 119, S13.	1.7	0
100	Physiological background of prevalent low-frequency oscillation of R–R intervals. International Journal of Cardiology, 2007, 119, S34.	1.7	0
101	Novel spectral indexes of heart rate variability as predictors of sudden and nonâ€sudden cardiac death after an acute myocardial infarction. Annals of Medicine, 2007, 39, 54-62.	3.8	53
102	Endurance training guided individually by daily heart rate variability measurements. European Journal of Applied Physiology, 2007, 101, 743-751.	2.5	286
103	Individual differences in the responses to endurance and resistance training. European Journal of Applied Physiology, 2006, 96, 535-542.	2.5	116
104	Cardiac vagal outflow after aerobic training by analysis of high-frequency oscillation of the R–R interval. European Journal of Applied Physiology, 2006, 96, 686-692.	2.5	42
105	Heart rate recovery after maximal exercise is associated with acetylcholine receptor M2 (CHRM2) gene polymorphism. American Journal of Physiology - Heart and Circulatory Physiology, 2006, 291, H459-H466.	3.2	59
106	Aerobic Training Guided Individually by Daily Heart Rate Variability Measurements. Medicine and Science in Sports and Exercise, 2006, 38, S488-S489.	0.4	0
107	Physiological Background of the Loss of Fractal Heart Rate Dynamics. Circulation, 2005, 112, 314-319.	1.6	219
108	Individual Differences In Response To Endurance And Strength Training. Medicine and Science in Sports and Exercise, 2005, 37, S189.	0.4	0

#	Article	IF	CITATIONS
109	Saturation of high-frequency oscillations of R-R intervals in healthy subjects and patients after acute myocardial infarction during ambulatory conditions. American Journal of Physiology - Heart and Circulatory Physiology, 2004, 287, H1921-H1927.	3.2	63
110	Heart rate dynamics after controlled training followed by a home-based exercise program. European Journal of Applied Physiology, 2004, 92, 289-97.	2.5	35
111	A Plateau in the Relationship between High-Frequency Power and R-R intervals at Low Heart Rates. Medicine and Science in Sports and Exercise, 2004, 36, S128-S129.	0.4	0
112	Cardiovascular autonomic function correlates with the response to aerobic training in healthy sedentary subjects. American Journal of Physiology - Heart and Circulatory Physiology, 2003, 285, H1747-H1752.	3.2	126