Teng Qiu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2950376/publications.pdf

Version: 2024-02-01

136885 4,008 140 32 h-index citations papers

58 g-index 5519 141 141 141 docs citations times ranked citing authors all docs

138417

#	Article	IF	CITATIONS
1	Plasmons in graphene: Recent progress and applications. Materials Science and Engineering Reports, 2013, 74, 351-376.	14.8	323
2	Experimental Evidence for the Quantum Confinement Effect in 3C-SiC Nanocrystallites. Physical Review Letters, 2005, 94, 026102.	2.9	288
3	In situ synthesis of Mn-doped ZnO multileg nanostructures and Mn-related Raman vibration. Journal of Applied Physics, 2005, 97, 014308.	1.1	164
4	Toward visible-light-assisted photocatalytic nitrogen fixation: A titanium metal organic framework with functionalized ligands. Applied Catalysis B: Environmental, 2020, 267, 118686.	10.8	149
5	Light-emitting diodes enhanced by localized surface plasmon resonance. Nanoscale Research Letters, 2011, 6, 199.	3.1	147
6	Epitaxial Ultrathin Organic Crystals on Graphene for Highâ€Efficiency Phototransistors. Advanced Materials, 2016, 28, 5200-5205.	11,1	134
7	The magnetic properties of Bi(Fe0.95Co0.05)O3 ceramics. Applied Physics Letters, 2009, 95, .	1.5	110
8	The magnetic properties of La doped and codoped BiFeO3. Journal of Alloys and Compounds, 2010, 499, 108-112.	2.8	93
9	Controlled Assembly of Highly Ramanâ€Enhancing Silver Nanocap Arrays Templated by Porous Anodic Alumina Membranes. Small, 2009, 5, 2333-2337.	5.2	92
10	Self-selective electroless plating: An approach for fabrication of functional 1D nanomaterials. Materials Science and Engineering Reports, 2008, 61, 59-77.	14.8	85
11	Self-organized synthesis of silver dendritic nanostructures via an electroless metal deposition method. Applied Physics A: Materials Science and Processing, 2005, 81, 669-671.	1.1	75
12	Plasmonic nano-lasers. Nano Energy, 2012, 1, 25-41.	8.2	75
13	Synthesis and magnetic properties of Zn1â^'xCoxO nanorods. Journal of Applied Physics, 2006, 99, 074303.	1.1	69
14	From Si nanotubes to nanowires: Synthesis, characterization, and self-assembly. Journal of Crystal Growth, 2005, 277, 143-148.	0.7	66
15	Intergrowth mechanism of silicon nanowires and silver dendrites. Journal of Electronic Materials, 2006, 35, 1879-1884.	1.0	60
16	Facile design of ultra-thin anodic aluminum oxide membranes for the fabrication of plasmonic nanoarrays. Nanotechnology, 2017, 28, 105301.	1.3	60
17	Aluminum plasmonic photocatalysis. Scientific Reports, 2015, 5, 15288.	1.6	59
18	Surface-enhanced Raman characteristics of Ag cap aggregates on silicon nanowire arrays. Nanotechnology, 2006, 17, 5769-5772.	1.3	58

#	Article	IF	Citations
19	Hot spots in highly Raman-enhancing silver nano-dendrites. Journal Physics D: Applied Physics, 2009, 42, 175403.	1.3	53
20	The origin of ultrasensitive SERS sensing beyond plasmonics. Frontiers of Physics, 2021, 16, 1.	2.4	53
21	Controlled Patterning of Plasmonic Dimers by Using an Ultrathin Nanoporous Alumina Membrane as a Shadow Mask. ACS Applied Materials & Shadow Mask. ACS Applied	4.0	50
22	Alloy Engineering in Few‣ayer Manganese Phosphorus Trichalcogenides for Surfaceâ€Enhanced Raman Scattering. Advanced Functional Materials, 2020, 30, 1910171.	7.8	48
23	Characteristics and surface energy of silicon-doped diamond-like carbon films fabricated by plasma immersion ion implantation and deposition. Diamond and Related Materials, 2006, 15, 1276-1281.	1.8	46
24	W ₁₈ O ₄₉ /Monolayer MoS ₂ Heterojunction-Enhanced Raman Scattering. Journal of Physical Chemistry Letters, 2019, 10, 4038-4044.	2.1	46
25	Self-assembled growth and optical emission of silver-capped silicon nanowires. Applied Physics Letters, 2004, 84, 3867-3869.	1.5	44
26	High SERS Sensitivity Enabled by Synergistically Enhanced Photoinduced Charge Transfer in Amorphous Nonstoichiometric Semiconducting Films. Advanced Materials Interfaces, 2019, 6, 1901133.	1.9	42
27	Hotspots on the Move: Active Molecular Enrichment by Hierarchically Structured Micromotors for Ultrasensitive SERS Sensing. ACS Applied Materials & Interfaces, 2020, 12, 28783-28791.	4.0	42
28	Silver nanocrystal superlattice coating for molecular sensing by surface-enhanced Raman spectroscopy. Applied Physics Letters, 2006, 89, 131914.	1.5	39
29	Luminescent silicon carbide nanocrystallites in 3C-SiCâ^•polystyrene films. Applied Physics Letters, 2005, 86, 171903.	1.5	38
30	Optofluidic detection for cellular phenotyping. Lab on A Chip, 2012, 12, 3552.	3.1	38
31	Graphene plasmon guided along a nanoribbon coupled with a nanoring. Journal Physics D: Applied Physics, 2014, 47, 135106.	1.3	37
32	High-Sensitivity and Stable Cellular Fluorescence Imaging by Patterned Silver Nanocap Arrays. ACS Applied Materials & Date: Applied Materials & Date	4.0	36
33	Assembly of gold nanoparticles into aluminum nanobowl array. Scientific Reports, 2017, 7, 2322.	1.6	33
34	Origin of layer-dependent SERS tunability in 2D transition metal dichalcogenides. Nanoscale Horizons, 2021, 6, 186-191.	4.1	33
35	Self-assembled growth of MgO nanosheet arrays via a micro-arc oxidation technique. Applied Surface Science, 2007, 253, 3987-3990.	3.1	31
36	Magneto-optical metamaterials with extraordinarily strong magneto-optical effect. Applied Physics Letters, 2016, 108, .	1.5	30

#	Article	IF	CITATIONS
37	Inkjet-printed paper-based semiconducting substrates for surface-enhanced Raman spectroscopy. Nanotechnology, 2020, 31, 055502.	1.3	30
38	Improving the performance of light-emitting diodes via plasmonic-based strategies. Journal of Applied Physics, 2020, 127, .	1.1	30
39	The impact of energy spectrum width in the energy selective electron low-temperature thermionic heat engine at maximum power. Physics Letters, Section A: General, Atomic and Solid State Physics, 2013, 377, 1566-1570.	0.9	29
40	Tunable Silver Nanocap Superlattice Arrays for Surface-Enhanced Raman Scattering. Journal of Physical Chemistry C, 2011, 115, 24328-24333.	1.5	28
41	Automatic molecular collection and detection by using fuel-powered microengines. Nanoscale, 2016, 8, 9141-9145.	2.8	28
42	Microdroplet-guided intercalation and deterministic delamination towards intelligent rolling origami. Nature Communications, 2019, 10, 5019.	5.8	28
43	Recent developments in optofluidic-surface-enhanced Raman scattering systems: Design, assembly, and advantages. Journal of Materials Research, 2011, 26, 170-185.	1.2	27
44	Flexible Surface-Enhanced Raman Scattering Chip: A Universal Platform for Real-Time Interfacial Molecular Analysis with Femtomolar Sensitivity. ACS Applied Materials & Samp; Interfaces, 2020, 12, 54174-54180.	4.0	27
45	Splitting of X-ray diffraction peak in (Ge:SiO2)/SiO2 multilayers. Solid State Communications, 2004, 131, 21-25.	0.9	26
46	Origin of the 370-nm luminescence in Si oxide nanostructures. Applied Physics Letters, 2005, 86, 201906.	1.5	26
47	Silver fractal networks for surface-enhanced Raman scattering substrates. Applied Surface Science, 2008, 254, 5399-5402.	3.1	26
48	Tailoring light emission properties of organic emitter by coupling to resonance-tuned silver nanoantenna arrays. Applied Physics Letters, 2009, 95, .	1.5	26
49	Room temperature ferromagnetic pure ZnO. Physica B: Condensed Matter, 2011, 406, 19-23.	1.3	26
50	Surfaced-enhanced cellular fluorescence imaging. Progress in Surface Science, 2012, 87, 23-45.	3.8	26
51	Plasmon-coupled charge transfer in WO _{3â^'x} semiconductor nanoarrays: toward highly uniform silver-comparable SERS platforms. Physical Chemistry Chemical Physics, 2019, 21, 2611-2618.	1.3	26
52	Manipulating Hot-Electron Injection in Metal Oxide Heterojunction Array for Ultrasensitive Surface-Enhanced Raman Scattering. ACS Applied Materials & Samp; Interfaces, 2021, 13, 51618-51627.	4.0	26
53	Silver Nanovoid Arrays for Surface-Enhanced Raman Scattering. Langmuir, 2012, 28, 8799-8803.	1.6	25
54	Exploring Rolled-up Au–Ag Bimetallic Microtubes for Surface-Enhanced Raman Scattering Sensor. Journal of Physical Chemistry C, 2012, 116, 25504-25508.	1.5	24

#	Article	IF	Citations
55	Plasmon-induced broadband fluorescence enhancement on Al-Ag bimetallic substrates. Scientific Reports, 2014, 4, 6014.	1.6	24
56	Ultrasonic exfoliated ReS ₂ nanosheets: fabrication and use as co-catalyst for enhancing photocatalytic efficiency of TiO ₂ nanoparticles under sunlight. Nanotechnology, 2019, 30, 184001.	1.3	24
57	Solvent effect on light-emitting property of Si nanocrystals. Physics Letters, Section A: General, Atomic and Solid State Physics, 2005, 334, 447-452.	0.9	23
58	Self-assembled growth and enhanced blue emission of SiOxNy-capped silicon nanowire arrays. Applied Physics Letters, 2005, 86, 193111.	1.5	23
59	The magnetoelectric coupling in rhombohedral–tetragonal phases coexisted Bi0.84Ba0.20FeO3. Physica B: Condensed Matter, 2012, 407, 2243-2246.	1.3	23
60	Self-assembled growth and green emission of gold nanowhiskers. Applied Physics Letters, 2005, 87, 223115.	1.5	21
61	Surface enhanced Raman scattering of aged graphene: Effects of annealing in vacuum. Applied Physics Letters, 2011, 99, .	1.5	20
62	Surface-enhanced Raman scattering from graphene covered gold nanocap arrays. Journal of Applied Physics, $2013,114,.$	1.1	19
63	Planar transition metal oxides SERS chips: a general strategy. Journal of Materials Chemistry C, 2019, 7, 11134-11141.	2.7	18
64	Surface-Enhanced Raman Scattering Monitoring of Oxidation States in Defect-Engineered Two-Dimensional Transition Metal Dichalcogenides. Journal of Physical Chemistry Letters, 2020, 11, 7981-7987.	2.1	17
65	Self-catalytic synthesis and light-emitting property of highly aligned Mn-doped Zn2SiO4 nanorods. Applied Physics A: Materials Science and Processing, 2005, 81, 929-931.	1.1	16
66	Recent Progress in Fabrication of Anisotropic Nanostructures for Surface- Enhanced Raman Spectroscopy. Recent Patents on Nanotechnology, 2009, 3, 10-20.	0.7	16
67	Aligned silver nanorod arrays for surface-enhanced Raman spectroscopy. Physica B: Condensed Matter, 2009, 404, 1523-1526.	1.3	16
68	Mixed-dimensional van der Waals heterojunction-enhanced Raman scattering. Nano Research, 2022, 15, 637-643.	5.8	16
69	Atomic layer deposition of platinum thin films on anodic aluminium oxide templates as surface-enhanced Raman scattering substrates. Vacuum, 2013, 89, 257-260.	1.6	15
70	Alumina nanotubes and nanowires from Al-based porous alumina membranes. Applied Physics A: Materials Science and Processing, 2005, 81, 621-625.	1.1	14
71	Rolled-Up Ag-SiOx Hyperbolic Metamaterials for Surface-Enhanced Raman Scattering. Plasmonics, 2015, 10, 949-954.	1.8	14
72	Multi-functional ratiometric fluorescent chemosensors of poly(N-isopropylacrylamide) containing rhodamine 6G and 1,8-naphthalimide moieties. Polymer, 2018, 151, 117-124.	1.8	14

#	Article	IF	Citations
73	Plasmonic metal carbide SERS chips. Journal of Materials Chemistry C, 2020, 8, 14523-14530.	2.7	14
74	Structural engineering of transition-metal nitrides for surface-enhanced Raman scattering chips. Nano Research, 2022, 15, 3794-3803.	5.8	14
75	Luminescent amorphous alumina nanoparticles in toluene solution. Journal of Physics Condensed Matter, 2006, 18, 9937-9942.	0.7	13
76	Silver nanocrystal superlattices: Self-assembly and optical emission. Applied Physics Letters, 2006, 88, 143111.	1.5	12
77	Local vibration at the surface of a Ge nanocrystal embedded in a silicon oxide matrix. Journal of Applied Physics, 2006, 99, 014301.	1.1	11
78	Effect of distance between acceptor and donor on optical properties of composite semiconducting polymer films. Journal of Luminescence, 2011, 131, 815-819.	1.5	11
79	A theoretical study on the performances of thermoelectric heat engine and refrigerator with two-dimensional electron reservoirs. Journal of Applied Physics, 2014, 115, .	1.1	11
80	Anodizing process of Al films on Si substrates for forming alumina templates with short-distance ordered 25 nm nanopores. Thin Solid Films, 2005, 492, 66-70.	0.8	10
81	Surface and interference co-enhanced Raman scattering from indium tin oxide nanocap arrays. Applied Surface Science, 2013, 280, 343-348.	3.1	10
82	Direct imprint of nanostructures in metals using porous anodic alumina stamps. Nanotechnology, 2013, 24, 255303.	1.3	10
83	Resonant electron transfer and luminescent enhancement in a toluene suspension of Si nanocrystals. Journal of Chemical Physics, 2006, 125, 054713.	1.2	9
84	Interference effects on indium tin oxide enhanced Raman scattering. Journal of Applied Physics, 2012, 111, .	1.1	9
85	Magnetic characterization of Bi(Fe1â^'xMnx)O3. Physics Letters, Section A: General, Atomic and Solid State Physics, 2011, 375, 1209-1212.	0.9	8
86	Surface-enhanced Raman spectroscopy on transparent fume-etched ITO-glass surface. Applied Surface Science, 2014, 309, 250-254.	3.1	8
87	Facile synthesis of gold coated copper(II) hydroxide pine-needle-like micro/nanostructures for surface-enhanced Raman scattering. Applied Surface Science, 2014, 311, 666-671.	3.1	8
88	Interaction between indium tin oxide nanoparticles and cytochrome $<$ i> $<$ c $<$ /i> $>$: A surface-enhanced Raman scattering and absorption spectroscopic study. Journal of Applied Physics, 2015, 117, .	1.1	8
89	Luminescence properties of ultrasmall amorphous Si nanoparticles with sizes smaller than 2nm. Journal of Crystal Growth, 2007, 304, 476-480.	0.7	7
90	Evolution process from ghost diffraction to ghost imaging in a lensless imaging system. Applied Optics, 2011, 50, 6098.	2.1	7

#	Article	lF	Citations
91	H mediated room temperature ferromagnetism in Zn0.98Cu0.02O. Journal of Alloys and Compounds, 2012, 536, 184-188.	2.8	7
92	Tunable fluorescence from patterned silver nano-island arrays for sensitive sub-cell imaging. Journal Physics D: Applied Physics, 2013, 46, 495302.	1.3	7
93	Efficiency at maximum power of thermochemical engines with near-independent particles. Physical Review E, 2016, 93, 032125.	0.8	7
94	The effect of imide substituents on the optical properties of perylene diimide derivatives. Luminescence, 2018, 33, 1209-1216.	1.5	7
95	Plasmon–exciton coupling dynamics and plasmonic lasing in a core–shell nanocavity. Nanoscale, 2021, 13, 6780-6785.	2.8	7
96	Influence of polar solvent on light-emitting property of SiO π smathsf{ $\{x = 1.2-1.6\}$ } nanoparticles irradiated by ultraviolet ozone. European Physical Journal B, 2004, 41, 49-53.	0.6	6
97	Multiferroic ZnO obtained by substituting oxygen with nitrogen. Chinese Physics B, 2011, 20, 087505.	0.7	6
98	Role of dispersion relation effect in topological surface-enhanced Raman scattering. Cell Reports Physical Science, 2021, 2, 100488.	2.8	6
99	Surface-Enhanced Raman Scattering Sensor Based on Silver Dendritic Nanostructures. Sensor Letters, 2010, 8, 395-398.	0.4	6
100	Self-organized synthesis of micrometer scale silver disks by electroless metal deposition on Si-incorporated diamond-like carbon films. Journal of Crystal Growth, 2005, 284, 470-476.	0.7	5
101	Individual alumina nanotubes coaxially wrapping carbon nanotubes and nanowires. Thin Solid Films, 2005, 478, 56-60.	0.8	5
102	Self-assembled growth and blue emission of a SiOx-capped (x= 0.5–0.8) silicon nanowire array. Nanotechnology, 2005, 16, 2222-2226.	1.3	5
103	Recent Progress in Patterned Silicon Nanowire Arrays: Fabrication, Properties and Applications. Recent Patents on Nanotechnology, 2011, 5, 62-70.	0.7	5
104	Effect of absorption to nanopore on optical properties of conjugated polymers in porous anode alumina. Journal of Applied Physics, 2011, 109, 044309-044309-5.	1.1	5
105	Modulation of surface-enhanced Raman spectra by depth selective excitation of embedded indium tin oxide nanoisland arrays. Journal Physics D: Applied Physics, 2011, 44, 215305.	1.3	5
106	Performance analysis of a tunneling thermoelectric heat engine with nano-scaled quantum well. Applied Physics A: Materials Science and Processing, 2014, 117, 1031-1039.	1.1	5
107	Facile synthesis of gold-capped TiO2 nanocomposites for surface-enhanced Raman scattering. Materials Chemistry and Physics, 2015, 153, 88-92.	2.0	5
108	Exploring indium tin oxide capped titanium dioxide nanolace arrays for plasmonic photocatalysis. RSC Advances, 2016, 6, 12611-12615.	1.7	5

#	Article	IF	CITATIONS
109	Self-assembled bundled TiO2nanowire arrays encapsulated with indium tin oxide for broadband absorption in plasmonic photocatalysis. Physical Chemistry Chemical Physics, 2017, 19, 27059-27064.	1.3	5
110	Mo-containing diamond-like carbon films with blue emission. Journal of Crystal Growth, 2005, 281, 538-542.	0.7	4
111	Self-assembled growth of C60 nanowhiskers on anodic porous alumina membranes. Applied Physics A: Materials Science and Processing, 2005, 81, 35-39.	1.1	4
112	Trace detection of multiwalled carbon nanotubes using Raman-enhancing silver nanocap arrays. Journal Physics D: Applied Physics, 2010, 43, 455302.	1.3	4
113	Verification and Analysis of Single-Molecule SERS Events via Polarization-Selective Raman Measurement. Analytical Chemistry, 2022, 94, 1046-1051.	3.2	4
114	Effective passivation on Si nanocrystal surface by peroxide. Journal of Crystal Growth, 2007, 304, 86-89.	0.7	3
115	The broadened and red-shifted photoluminescence spectral emission of poly(N-vinylcarbazole) nanoparticles. Dyes and Pigments, 2010, 84, 165-168.	2.0	3
116	Band-gap-dependent emissions from conjugated polymers coupled silver nanocap array. Applied Physics Letters, 2011, 99, 233112.	1.5	3
117	Tunable Surfaceâ€nhanced Raman Scattering from Highâ€Density Gold Semishell Arrays with Controllable Dimensions. ChemPhysChem, 2014, 15, 337-343.	1.0	3
118	Interaction between indium tin oxide nanoparticles and ferricytochrome c: Conformation, redox state, and adsorption scheme. Spectrochimica Acta - Part A: Molecular and Biomolecular Spectroscopy, 2019, 213, 64-72.	2.0	3
119	Ultra-strong mode confinement at semishell metal/insulator/semiconductor interface for nanolaser. Journal of Luminescence, 2021, 238, 118242.	1.5	3
120	Monitoring substrate-induced electron–phonon coupling at interfaces of 2D organic/inorganic van der Waals heterostructures with ⟨i⟩in situ⟨/i⟩ Raman spectroscopy. Applied Physics Letters, 2022, 120, 181602.	1.5	3
121	Enhanced photoluminescence from Cr3+ centers in α-sapphire coated with LiNbO3(:Fe) and LiTaO3 films. Applied Physics A: Materials Science and Processing, 2004, 79, 2085-2087.	1.1	2
122	Photoluminescence from C60-coupled porous structures formed on Fe+-implanted silicon. Journal of Chemical Physics, 2006, 125, 014706.	1.2	2
123	Enhanced emission from Alq ₃ in PVK/Alq ₃ blend films based on resonance energy transfer. Journal of Polymer Science, Part B: Polymer Physics, 2009, 47, 1772-1777.	2.4	2
124	Modulating emission from acceptor in donor-acceptor diblock copolymers by plasmon resonance energy transfer. Journal of Applied Physics, 2011, 110, 114319.	1.1	2
125	Flexible fabrication of new-type porous anodic alumina membranes with tunable geometric features by low-cost nanoimprint lithography. Nanoscale Advances, 2021, 3, 2918-2923.	2.2	2
126	Controlled Assembly of Plasmonic Nanostructures Templated by Porous Anodic Alumina Membranes. International Journal of Behavioral and Consultation Therapy, 2016, , 249-274.	0.4	2

#	Article	IF	CITATIONS
127	Si nanowires sheathed with thin diamondlike carbon films. Journal of Vacuum Science & Technology B, 2006, 24, 1702.	1.3	1
128	Hot spots in silver nano-dendrites fabricated by self-selective electroless plating. , 2010, , .		1
129	Visibility of ghost imaging in a two-arm microscope imaging system. Journal of Modern Optics, 2012, 59, 360-364.	0.6	1
130	Fabrication of Si–Ag "wire-cap―nanostructures for metal-enhanced fluorescence. Journal of Luminescence, 2012, 132, 2586-2589.	1.5	1
131	Solvent inducing aggregates of perylene tetracarboxylic diimide in polymer backbone. Journal of Applied Polymer Science, 2013, 130, 4113-4118.	1.3	1
132	Low-Threshold Surface Plasmon Lasing using the Band Edge Mode in a Bi-Periodic Groove Array. Chinese Physics Letters, 2013, 30, 087805.	1.3	1
133	Tunable Ordered Silver Nano-Arrays Prepared by TiO ₂ Templates as Surface-Enhanced Raman Scattering Substrates. Nanoscience and Nanotechnology Letters, 2015, 7, 892-896.	0.4	1
134	Coaxial Nanocable Arrays: Si Sheathed With Diamond-like Carbon. , 0, , .		0
135	Emission properties of composite semiconducting polymer nanoparticles. Journal of Applied Polymer Science, 2010, 117, 3340-3344.	1.3	O
136	Plasmon-enhanced luminescence in MEH-PPV coupled silver nanoantenna arrays and the potential for photovoltaics. , 2010 , , .		0
137	Controlled assembly of sliver nanocap arrays with tunable gaps for molecular sensing using SERS. , 2010, , .		O
138	Effect of interchain interaction on optical properties of poly(pâ€phenylene vinylene) derivative containing oxadiazole in backbone. Journal of Applied Polymer Science, 2011, 122, 2583-2587.	1.3	0
139	Enhanced emission from the acceptor in all-conjugated diblock copolymers due to spatial effect of nanopores. Journal of Applied Physics, 2011, 110, 104304.	1.1	0
140	Stability of the structure and redox state of ferricytochrome c in the desolvation process. Vibrational Spectroscopy, 2021, 113, 103220.	1.2	0