Xiao Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2950240/publications.pdf

Version: 2024-02-01

279798 243625 2,025 47 23 44 citations h-index g-index papers 49 49 49 3429 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	3D-bioprinted vascular scaffold with tunable mechanical properties for simulating and promoting neo-vascularization. Smart Materials in Medicine, 2022, 3, 199-208.	6.7	19
2	Bioprinting of Chondrocyte Stem Cell Co-Cultures for Auricular Cartilage Regeneration. ACS Omega, 2022, 7, 5908-5920.	3.5	15
3	An electroactive hybrid biointerface for enhancing neuronal differentiation and axonal outgrowth on bio-subretinal chip. Materials Today Bio, 2022, 14, 100253.	5.5	8
4	Sensing and Stimulating Electrodes for Electroceuticals. Frontiers in Sensors, 2022, 3, .	3.3	0
5	A Battery Method to Enhance the Degradation of Iron Stent and Regulating the Effect on Living Cells. Small Methods, 2022, 6, .	8.6	3
6	A 3D printed graphene electrode device for enhanced and scalable stem cell culture, osteoinduction and tissue building. Materials and Design, 2021, 201, 109473.	7.0	6
7	Light Cross-Linkable Marine Collagen for Coaxial Printing of a 3D Model of Neuromuscular Junction Formation. Biomedicines, 2021, 9, 16.	3.2	24
8	Electrical stimulation-induced osteogenesis of human adipose derived stem cells using a conductive graphene-cellulose scaffold. Materials Science and Engineering C, 2020, 107, 110312.	7.3	47
9	Composite Tissue Adhesive Containing Catechol-Modified Hyaluronic Acid and Poly- <scp>l</scp> -lysine. ACS Applied Bio Materials, 2020, 3, 628-638.	4.6	20
10	A microvalve cell printing technique using riboflavin photosensitizer for selective cell patterning onto a retinal chip. Bioprinting, 2020, 20, e00097.	5.8	8
11	3D Printing of Cytocompatible Graphene/Alginate Scaffolds for Mimetic Tissue Constructs. Frontiers in Bioengineering and Biotechnology, 2020, 8, 824.	4.1	41
12	Electrofluidic control of bioactive molecule delivery into soft tissue models based on gelatin methacryloyl hydrogels using threads and surgical sutures. Scientific Reports, 2020, 10, 7120.	3.3	15
13	Biomimetic corneal stroma using electro-compacted collagen. Acta Biomaterialia, 2020, 113, 360-371.	8.3	23
14	Encapsulation of Human Natural and Induced Regulatory Tâ€Cells in ILâ€2 and CCL1 Supplemented Alginateâ€GelMA Hydrogel for 3D Bioprinting. Advanced Functional Materials, 2020, 30, 2000544.	14.9	31
15	Graphene Oxide–Based Nanomaterials: An Insight into Retinal Prosthesis. International Journal of Molecular Sciences, 2020, 21, 2957.	4.1	19
16	3D graphene-containing structures for tissue engineering. Materials Today Chemistry, 2019, 14, 100199.	3.5	23
17	Pancreatic Islet Transplantation: Development of a Coaxial 3D Printing Platform for Biofabrication of Implantable Isletâ€Containing Constructs (Adv. Healthcare Mater. 7/2019). Advanced Healthcare Materials, 2019, 8, 1970029.	7.6	1
18	Smart graphene-cellulose paper for 2D or 3D "origami-inspired―human stem cell support and differentiation. Colloids and Surfaces B: Biointerfaces, 2019, 176, 87-95.	5.0	31

#	Article	IF	Citations
19	Development of a Coaxial 3D Printing Platform for Biofabrication of Implantable Islet ontaining Constructs. Advanced Healthcare Materials, 2019, 8, e1801181.	7.6	55
20	Biomaterials for corneal bioengineering. Biomedical Materials (Bristol), 2018, 13, 032002.	3.3	91
21	Advanced fabrication approaches to controlled delivery systems for epilepsy treatment. Expert Opinion on Drug Delivery, 2018, 15, 915-925.	5.0	16
22	A smart cyto-compatible asymmetric polypyrrole membrane for salinity power generation. Nano Energy, 2018, 53, 475-482.	16.0	54
23	Characterization of 3D-Printed Human Regulatory T-Cells. Transplantation, 2018, 102, S109.	1.0	0
24	Fabrication and In Vitro Characterization of Electrochemically Compacted Collagen/Sulfated Xylorhamnoglycuronan Matrix for Wound Healing Applications. Polymers, 2018, 10, 415.	4.5	22
25	Three-dimensional neuronal cell culture: in pursuit of novel treatments for neurodegenerative disease. MRS Communications, 2017, 7, 320-331.	1.8	5
26	Development of a porous 3D graphene-PDMS scaffold for improved osseointegration. Colloids and Surfaces B: Biointerfaces, 2017, 159, 386-393.	5.0	52
27	The effect of treatment time on the ionic liquid surface film formation: Promising surface coating for Mg alloy AZ31. Surface and Coatings Technology, 2016, 296, 192-202.	4.8	17
28	A Cytocompatible Robust Hybrid Conducting Polymer Hydrogel for Use in a Magnesium Battery. Advanced Materials, 2016, 28, 9349-9355.	21.0	67
29	Advances in printing biomaterials and living cells. Current Opinion in Organ Transplantation, 2016, 21, 467-475.	1.6	31
30	A novel and facile approach to fabricate a conductive and biomimetic fibrous platform with sub-micron and micron features. Journal of Materials Chemistry B, 2016, 4, 1056-1063.	5.8	10
31	Influence of Biodopants on PEDOT Biomaterial Polymers: Using QCMâ€D to Characterize Polymer Interactions with Proteins and Living Cells. Advanced Materials Interfaces, 2014, 1, 1300122.	3.7	47
32	Biofunctionalized anti-corrosive silane coatings for magnesium alloys. Acta Biomaterialia, 2013, 9, 8671-8677.	8.3	116
33	PEGylation of platinum bio-electrodes. Electrochemistry Communications, 2013, 27, 54-58.	4.7	14
34	Inkjet printed polypyrrole/collagen scaffold: A combination of spatial control and electrical stimulation of PC12 cells. Synthetic Metals, 2012, 162, 1375-1380.	3.9	61
35	Inhibition of smooth muscle cell adhesion and proliferation on heparin-doped polypyrrole. Acta Biomaterialia, 2012, 8, 194-200.	8.3	60
36	Conducting polymers with immobilised fibrillar collagen for enhanced neural interfacing. Biomaterials, 2011, 32, 7309-7317.	11.4	105

#	Article	IF	CITATIONS
37	Bio-functionalisation of polydimethylsiloxane with hyaluronic acid and hyaluronic acid – Collagen conjugate for neural interfacing. Biomaterials, 2011, 32, 4714-4724.	11.4	60
38	Fabrication and Characterization of Cytocompatible Polypyrrole Films Inkjet Printed from Nanoformulations Cytocompatible, Inkjetâ€Printed Polypyrrole Films. Small, 2011, 7, 3434-3438.	10.0	18
39	Guidance of neurite outgrowth on aligned electrospun polypyrrole/poly(styreneâ€Î²â€isobutyleneâ€Î²â€styrene) fiber platforms. Journal of Biomedical Materials Research - Part A, 2010, 94A, 1004-1011.	4.0	39
40	Electrical stimulation promotes nerve cell differentiation on polypyrrole/poly (2-methoxy-5 aniline) Tj ETQq0 0 0 rg	gBT/Overlo	ock 10 Tf 50
41	3D Bio-nanofibrous PPy/SIBS mats as platforms for cell culturing. Chemical Communications, 2008, , 3729.	4.1	41
42	UNUSUAL ELECTROCHEMICAL RESPONSE OF ELECTROCHEMICAL ETCHING ON MULTIWALLED CARBON NANOTUBES. Nano, 2008, 03, 461-467.	1.0	4
43	Pt–Pb alloy nanoparticle/carbon nanotube nanocomposite: a strong electrocatalyst for glucose oxidation. Nanotechnology, 2006, 17, 2334-2339.	2.6	179
44	In situ temporal detection of dopamine exocytosis from l-dopa-incubated MN9D cells using microelectrode array-integrated biochip. Sensors and Actuators B: Chemical, 2006, 115, 634-641.	7.8	25
45	Electrochemical oxidation of multi-walled carbon nanotubes and its application to electrochemical double layer capacitors. Electrochemistry Communications, 2005, 7, 249-255.	4.7	185
46	Preparation and Characterization of Aligned Carbon Nanotube-Ruthenium Oxide Nanocomposites for Supercapacitors. Small, 2005, 1, 560-565.	10.0	222
47	Development of an <i> in-situ</i> Printing System with Human Platelet Lysate Based Bioink to Treat Corneal Perforation. SSRN Electronic Journal, 0, , .	0.4	0