
Kazuki Nanko

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2949285/publications.pdf Version: 2024-02-01

KAZUKI NANKO

#	Article	IF	CITATIONS
1	Homogenization of the terrestrial water cycle. Nature Geoscience, 2020, 13, 656-658.	12.9	242
2	The total amounts of radioactively contaminated materials in forests in Fukushima, Japan. Scientific Reports, 2012, 2, 416.	3.3	188
3	Evaluating the influence of canopy species and meteorological factors on throughfall drop size distribution. Journal of Hydrology, 2006, 329, 422-431.	5.4	149
4	Estimation of soil splash detachment rates on the forest floor of an unmanaged Japanese cypress plantation based on field measurements of throughfall drop sizes and velocities. Catena, 2008, 72, 348-361.	5.0	104
5	Predicted spatio-temporal dynamics of radiocesium deposited onto forests following the Fukushima nuclear accident. Scientific Reports, 2013, 3, 2564.	3.3	95
6	Throughfall drop size distributions: a review and prospectus for future research. Wiley Interdisciplinary Reviews: Water, 2017, 4, e1225.	6.5	94
7	Spatial variability of throughfall under a single tree: Experimental study of rainfall amount, raindrops, and kinetic energy. Agricultural and Forest Meteorology, 2011, 151, 1173-1182.	4.8	81
8	Assessing raindrop impact energy at the forest floor in a mature Japanese cypress plantation using continuous raindrop-sizing instruments. Journal of Forest Research, 2004, 9, 157-164.	1.4	74
9	Physical interpretation of the difference in drop size distributions of leaf drips among tree species. Agricultural and Forest Meteorology, 2013, 169, 74-84.	4.8	73
10	Expressing stemflow commensurate with its ecohydrological importance. Advances in Water Resources, 2018, 121, 472-479.	3.8	71
11	Reductions in water, soil and nutrient losses and pesticide pollution in agroforestry practices: a review of evidence and processes. Plant and Soil, 2020, 453, 45-86.	3.7	70
12	Effect of canopy thickness and canopy saturation on the amount and kinetic energy of throughfall: An experimental approach. Geophysical Research Letters, 2008, 35, .	4.0	56
13	A pedotransfer function for estimating bulk density of forest soil in Japan affected by volcanic ash. Geoderma, 2014, 213, 36-45.	5.1	54
14	Throughfall partitioning by trees. Hydrological Processes, 2019, 33, 1698-1708.	2.6	53
15	Erosion Potential under <i>Miconia calvescens</i> Stands on the Island of Hawaiâ€~i. Land Degradation and Development, 2015, 26, 218-226.	3.9	50
16	Differences in throughfall drop size distributions in the presence and absence of foliage. Hydrological Sciences Journal, 2016, 61, 620-627.	2.6	50
17	Effect of canopy interception on spatial variability and isotopic composition of throughfall in Japanese cypress plantations. Journal of Hydrology, 2013, 504, 1-11.	5.4	49
18	The effect of slope angle on splash detachment in an unmanaged Japanese cypress plantation forest. Hydrological Processes, 2010, 24, 576-587.	2.6	38

ΚΑΖUKI ΝΑΝΚΟ

#	Article	IF	CITATIONS
19	Immediate change in throughfall spatial distribution and canopy water balance after heavy thinning in a dense mature Japanese cypress plantation. Ecohydrology, 2016, 9, 300-314.	2.4	36
20	Rainfall erosivity–intensity relationships for normal rainfall events and a tropical cyclone on the US southeast coast. Journal of Hydrology, 2016, 534, 440-450.	5.4	34
21	Effects of plant roots on the soil erosion rate under simulated rainfall with high kinetic energy. Hydrological Sciences Journal, 2016, 61, 2435-2442.	2.6	34
22	Advancing ecohydrology in the 21st century: A convergence of opportunities. Ecohydrology, 2020, 13, e2208.	2.4	34
23	Characteristics of soil erosion in a moso-bamboo forest of western Japan: Comparison with a broadleaved forest and a coniferous forest. Catena, 2019, 172, 451-460.	5.0	32
24	What factors are most influential in governing stemflow production from plantation-grown teak trees?. Journal of Hydrology, 2017, 544, 10-20.	5.4	31
25	Throughfall under a teak plantation in Thailand: a multifactorial analysis on the effects of canopy phenology and meteorological conditions. International Journal of Biometeorology, 2015, 59, 1145-1156.	3.0	26
26	Portable rainfall simulator for plot-scale investigation of rainfall-runoff, and transport of sediment and pollutants. International Journal of Sediment Research, 2019, 34, 38-47.	3.5	26
27	Variability of surface runoff generation and infiltration rate under a tree canopy: indoor rainfall experiment using Japanese cypress (<i>Chamaecyparis obtusa</i>). Hydrological Processes, 2010, 24, 567-575.	2.6	25
28	Stemflow-induced spatial heterogeneity of radiocesium concentrations and stocks in the soil of a broadleaved deciduous forest. Science of the Total Environment, 2017, 599-600, 1013-1021.	8.0	22
29	Estimation of temporal variation in splash detachment in two Japanese cypress plantations of contrasting age. Earth Surface Processes and Landforms, 2010, 35, 993-1005.	2.5	20
30	Effects of Understory Vegetation on Infiltration Capacity in Japanese Cypress Plantation Journal of the Japanese Forest Society, 2010, 92, 145-150.	0.2	18
31	Correction of Canopy Interception Loss Measurements in Temperate Forests: A Comparison of Necessary Adjustments among Three Different Rain Gauges Based on a Dynamic Calibration Procedure. Journal of Hydrometeorology, 2018, 19, 547-553.	1.9	17
32	Data-mining analysis of the global distribution of soil carbon in observational databases and Earth system models. Geoscientific Model Development, 2017, 10, 1321-1337.	3.6	16
33	Factors influencing the erosivity indices of raindrops in Japanese cypress plantations. Catena, 2018, 171, 54-61.	5.0	16
34	Field Measurement of Infiltration Rate Using an Oscillating Nozzle Rainfall Simulator in Devastated Hinoki Plantation. Suimon Mizu Shigen Gakkaishi, 2008, 21, 439-448.	0.1	16
35	Assessment of soil group, site and climatic effects on soil organic carbon stocks of topsoil in <scp>J</scp> apanese forests. European Journal of Soil Science, 2017, 68, 547-558.	3.9	14
36	Tree dynamic response and survival in a category-5 tropical cyclone: The case of super typhoon Trami. Science Advances, 2022, 8, eabm7891.	10.3	14

ΚΑΖUKI ΝΑΝΚΟ

#	Article	IF	CITATIONS
37	Peak grain forecasts for the US High Plains amid withering waters. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 26145-26150.	7.1	12
38	A network model for stemflow solute transport. Applied Mathematical Modelling, 2020, 88, 266-282.	4.2	12
39	Modeling impacts of broad-scale plantation forestry on ecosystem services in the past 60Âyears and for the future. Ecosystem Services, 2021, 49, 101271.	5.4	12
40	Commentary: What We Know About Stemflow's Infiltration Area. Frontiers in Forests and Global Change, 2020, 3, .	2.3	12
41	Characterization of differential throughfall drop size distributions beneath European beech and Norway spruce. Hydrological Processes, 2019, 33, 3391-3406.	2.6	11
42	The variability of stemflow generation in a natural beech stand (Fagus orientalis Lipsky) in relation to rainfall and tree traits. Ecohydrology, 2020, 13, e2198.	2.4	10
43	Throughfall Erosivity in Relation to Drop Size and Crown Position: A Case Study from a Teak Plantation in Thailand. Ecological Studies, 2020, , 279-298.	1.2	10
44	National-scale 3D mapping of soil organic carbon in a Japanese forest considering microtopography and tephra deposition. Geoderma, 2022, 406, 115534.	5.1	10
45	Throughfall drop sizes suggest canopy flowpaths vary by phenophase. Journal of Hydrology, 2022, 612, 128144.	5.4	10
46	Export of radioactive cesium from agricultural fields under simulated rainfall in Fukushima. Environmental Sciences: Processes and Impacts, 2015, 17, 1157-1163.	3.5	9
47	Experimental Study on Spatial Distribution of Throughfall Under a Japanese Cypress Tree. Suimon Mizu Shigen Gakkaishi, 2008, 21, 273-284.	0.1	9
48	Throughfall isotopic composition in relation to drop size at the intra-event scale in a Mediterranean Scots pine stand. Hydrology and Earth System Sciences, 2020, 24, 4675-4690.	4.9	9
49	Vertical distribution and transport of radiocesium via branchflow and stemflow through the canopy of cedar and oak stands in the aftermath of the Fukushima Dai-ichi Nuclear Power Plant accident. Science of the Total Environment, 2022, 818, 151698.	8.0	9
50	Mechanical properties of Japanese black pine (Pinus thunbergii Parl.) planted on coastal sand dunes: resistance to uprooting and stem breakage by tsunamis. Wood Science and Technology, 2019, 53, 469-489.	3.2	8
51	Stemflow infiltration areas into forest soils around American beech (<scp><i>Fagus) Tj ETQq1 1 0.784314 rgBT</i></scp>	/Overlock 2.4	10 ₈ Tf 50 182
52	Rainfall Tendency in Winter Sugadairakogen Highlands, Nagano Prefecture. Suimon Mizu Shigen Gakkaishi, 2012, 25, 271-289.	0.1	6
53	Canopy structure metrics governing stemflow funnelling differ between leafed and leafless states: Insights from a largeâ€scale rainfall simulator. Hydrological Processes, 2021, 35, e14294.	2.6	5
54	Relationship between Throughfall Kinetic Energy and Tree Height, Crown Bottom Height, and Crown Length for Japanese Cypress Plantation. Journal of the Japanese Forest Society, 2013, 95, 234-239.	0.2	4

ΚΑΖUKI ΝΑΝΚΟ

#	Article	IF	CITATIONS
55	Geographic Factors Explain the Variability of Atmospheric Deposition of Sulfur and Nitrogen onto Coniferous Forests Within and Beyond the Tokyo Metropolis. Water, Air, and Soil Pollution, 2020, 231, 1.	2.4	3
56	Port construction alters dune topography and coastal forest growth: A study on forest decline due to coastal erosion. Ecological Engineering, 2022, 180, 106640.	3.6	3
57	A phenomenological model for throughfall rendering in real-time. Computer Graphics Forum, 2016, 35, 13-23.	3.0	2
58	Estimating the Economic Effect of Heavy Thinning on the Water Resource Storage Function of Dense Japanese Cypress Plantations. Suimon Mizu Shigen Gakkaishi, 2010, 23, 437-443.	0.1	2
59	APPLICABILITY OF A COMPACT DOPPLER SENSOR FOR VEHICLE PRECIPITATION MEASUREMENTS. Journal of Japan Society of Civil Engineers Ser B1 (Hydraulic Engineering), 2020, 76, I_211-I_216.	0.1	Ο