Lucjan Sniezek

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2948881/publications.pdf Version: 2024-02-01

LUCIAN SNIEZEK

#	Article	IF	CITATIONS
1	Mechanical and microstructural characteristics of Ti6Al4V/AA2519 and Ti6Al4V/AA1050/AA2519 laminates manufactured by explosive welding. Materials and Design, 2016, 111, 146-157.	3.3	82
2	Low cycle fatigue properties of AA2519–Ti6Al4V laminate bonded by explosion welding. Engineering Failure Analysis, 2016, 69, 77-87.	1.8	47
3	The Influence of Exposure Energy Density on Porosity and Microhardness of the SLM Additive Manufactured Elements. Materials, 2018, 11, 2304.	1.3	39
4	Effect of complex combined loading mode on the fracture toughness of titanium alloys. Vacuum, 2018, 147, 51-57.	1.6	31
5	Mechanical properties of explosively welded AA2519-AA1050-Ti6Al4V layered material at ambient and cryogenic conditions. Materials and Design, 2017, 133, 390-403.	3.3	30
6	The Examination of Restrained Joints Created in the Process of Multi-Material FFF Additive Manufacturing Technology. Materials, 2020, 13, 903.	1.3	26
7	The Effect of Post-Weld Hot-Rolling on the Properties of Explosively Welded Mg/Al/Ti Multilayer Composite. Materials, 2020, 13, 1930.	1.3	24
8	The Influence of Post-Weld Heat Treatment on the Microstructure and Fatigue Properties of Sc-Modified AA2519 Friction Stir-Welded Joint. Materials, 2019, 12, 583.	1.3	22
9	Influence of Selective Laser Melting Technological Parameters on the Mechanical Properties of Additively Manufactured Elements Using 316L Austenitic Steel. Materials, 2020, 13, 1449.	1.3	20
10	Low Cycle Fatigue Properties of Sc-Modified AA2519-T62 Extrusion. Materials, 2020, 13, 220.	1.3	19
11	The Influence of the Post-Weld Heat Treatment on the Microstructure of Inconel 625/Carbon Steel Bimetal Joint Obtained by Explosive Welding. Metals, 2019, 9, 246.	1.0	18
12	Crack Growth Behavior of Additively Manufactured 316L Steel—Influence of Build Orientation and Heat Treatment. Materials, 2020, 13, 3259.	1.3	17
13	A Comparative LCF Study of S960QL High Strength Steel and S355J2 Mild Steel. Procedia Engineering, 2015, 114, 78-85.	1.2	16
14	Cyclic deformation of aluminium alloys after the preliminary combined loading. Engineering Failure Analysis, 2016, 69, 66-76.	1.8	16
15	Research on the Friction Stir Welding of Sc-Modified AA2519 Extrusion. Metals, 2019, 9, 1024.	1.0	16
16	Comparison of Different Heat Treatment Processes of Selective Laser Melted 316L Steel Based on Analysis of Mechanical Properties. Materials, 2020, 13, 3805.	1.3	15
17	The carrying capacity of conical interference-fit joints with laser reinforcement zones. Journal of Materials Processing Technology, 2010, 210, 914-925.	3.1	14
18	The Influence of Heat Treatment on Low Cycle Fatigue Properties of Selectively Laser Melted 316L Steel. Materials, 2020, 13, 5737.	1.3	14

Lucjan Sniezek

#	Article	IF	CITATIONS
19	Low Cycle Fatigue Properties Laminate AA2519-TI6AL4V. Procedia Engineering, 2015, 114, 26-33.	1.2	13
20	Residual stresses distribution, correlated with bending tests, within explosively welded Ti gr. 2/A1050 bimetals. Materials Characterization, 2018, 144, 461-468.	1.9	12
21	Modification of Structural Properties Using Process Parameters and Surface Treatment of Monolithic and Thin-Walled Parts Obtained by Selective Laser Melting. Materials, 2020, 13, 5662.	1.3	11
22	High cycle fatigue properties of explosively welded laminate AA2519/AA1050/Ti6Al4V. Procedia Structural Integrity, 2017, 5, 422-429.	0.3	10
23	Influence of Preliminary Combined Loading on Low Cyclic Fatigue Deformation of Aluminum Alloy D16ChATV. Procedia Engineering, 2015, 114, 18-25.	1.2	9
24	An experimental investigation of propagation the semi-elliptical surface cracks in an austenitic steel. International Journal of Pressure Vessels and Piping, 2016, 144, 35-44.	1.2	9
25	Research on the Properties and Low Cycle Fatigue of Sc-Modified AA2519-T62 FSW Joint. Materials, 2020, 13, 5226.	1.3	9
26	Fatigue Properties and Cracking of High Strength Steel S1100QL Welded Joints. Key Engineering Materials, 0, 598, 237-242.	0.4	8
27	The influence of welding parameters on macrostructure and mechanical properties of Sc-modified AA2519-T62 FSW joints. Manufacturing Review, 2020, 7, 28.	0.9	8
28	Studies of the AA2519 Alloy Hot Rolling Process and Cladding with EN AW-1050A Alloy. Archives of Metallurgy and Materials, 2016, 61, 381-388.	0.6	7
29	Mechanical Properties Analysis of the AA2519-AA1050-Ti6Al4V Explosive Welded Laminate. Materials, 2020, 13, 4348.	1.3	7
30	The Influence of Heat Treatment on the Mechanical Properties and Corrosion Resistance of the Ultrafine-Grained AA7075 Obtained by Hydrostatic Extrusion. Materials, 2022, 15, 4343.	1.3	7
31	Analysis of the microstructure of an AZ31/AA1050/AA2519 laminate produced using the explosive-welding method. Materiali in Tehnologije, 2019, 53, 239-243.	0.3	6
32	A Comparative Study on Laser Powder Bed Fusion of Differently Atomized 316L Stainless Steel. Materials, 2022, 15, 4938.	1.3	6
33	Fatigue Life of Welded Joints of High-Strength Structural Steel S960QL. Solid State Phenomena, 0, 250, 169-174.	0.3	5
34	Testing and verification modeling of wave-shape formation under explosion welding to laminate AA 2519-Ti6Al4V. Procedia Structural Integrity, 2016, 2, 2375-2380.	0.3	5
35	Ti6Al4V-AA1050-AA2519 explosively-cladded plates under impact loading. European Physical Journal: Special Topics, 2018, 227, 17-27.	1.2	5
36	Microstructure and Residual Stresses of AA2519 Friction Stir Welded Joints under Different Heat Treatment Conditions. Materials, 2020, 13, 834.	1.3	5

Lucjan Sniezek

#	Article	IF	CITATIONS
37	DSC Investigations of the Phase Transition in the High Strength Steel S960QL. Advanced Materials Research, 0, 1126, 148-154.	0.3	4
38	Fatigue Cracking of AA2519-Ti6Al4V Laminate Bonded by Explosion Welding. Solid State Phenomena, 2016, 250, 182-190.	0.3	4
39	THE INFLUENCE OF THE ADDITION OF GRAPHITE ON THE TRIBOLOGICAL PROPERTIES OF POLYLACTIC (PLA) APPLIED IN 3D PRINTING TECHNOLOGY. Tribologia, 2018, 277, 89-93.	0.0	4
40	THE INFLUENCE OF FRICTION STIR WELDED PROCESS PARAMETERS OF AA2519-T62 ON JOINT QUALITY DEFINED BY NON-DESTRUCTIVE LASER AMPLIFIED ULTRASONIC METHOD AND BY MICROSTRUCTURE ANALYSIS. Acta Polytechnica, 2020, 60, 415-419.	0.3	3
41	Properties of welded joints made in high strength steel using laser technology. Bulletin of the Military University of Technology, 2017, 66, 55-66.	0.1	3
42	The influence of tool traverse speed on the low cycle fatigue properties of AZ31 friction stir welded joints. Procedia Structural Integrity, 2022, 36, 153-158.	0.3	3
43	Deterministic and Probabilistic Analysis of Semi-elliptical Cracks in Austenitic Steel. , 2014, 3, 2160-2167.		2
44	Microstructure and fatigue properties of AA2519-O friction stir welded joint. Materials Today: Proceedings, 2020, 28, 1064-1067.	0.9	2
45	Research on the microstructure of a Ti6Al4V-AA1050 explosive-welded bimetallic joint. Materiali in Tehnologije, 2019, 53, 109-113.	0.3	2
46	Concept of Implementation of Remote Control Systems into Manned Armoured Ground Tracked Vehicles. Studies in Systems, Decision and Control, 2014, , 19-37.	0.8	2
47	The Danger of Self-Organizing Structures in Materials Subjected to Dynamical Non-Equilibrium Processes. Key Engineering Materials, 0, 577-578, 525-528.	0.4	1
48	Structural Modifications of the Aluminium Alloy in Conditions of Additional Shock Impulse Load. Key Engineering Materials, 0, 592-593, 598-601.	0.4	1
49	Evaluation of Fatigue Failure of S960QL Steel in the Conditions of Plastic Strain. Solid State Phenomena, 0, 250, 175-181.	0.3	1
50	Contact fatigue strength of 21NiCrMo2 steel gears subjected to shot peening treatment. AIP Conference Proceedings, 2018, , .	0.3	1
51	The Analytical Model of Stress Zone Formation of Ti4Al4V/AA1050/AA2519 Laminate Produced by Explosive Bonding. Metals, 2019, 9, 779.	1.0	1
52	The Effect of Hypervelocity Impact Loading on Explosively Welded Ti/Al/Al Plate. MATEC Web of Conferences, 2019, 253, 01007.	0.1	1
53	PARAMETERS SELECTION OF SHOT PEENING GEARS OF CARBURIZED AND HARDENED STEEL 21NICRMO2. Journal of KONES, 2016, 23, 389-396.	0.2	1
54	Mechanical Properties Analysis of Explosive Welded Sheet of AA2519-Ti6Al4V with Interlayer of AA1050 Subjected to Heat-Treatment. Materials, 2022, 15, 4023.	1.3	1

#	Article	IF	CITATIONS
55	Increasing the Mechanical Strength and Corrosion Resistance of Aluminum Alloy 7075 via Hydrostatic Extrusion and Aging. Materials, 2022, 15, 4577.	1.3	0