
Nicolas Desbois

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2948582/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Corroles As Precursors of Porous Organic Polymers (POPs) and Molecularly Imprinted Polymers (MIPs) - Application to the Detection of CO and the Decontamination of Chemical Nerve Agents. ECS Meeting Abstracts, 2022, MA2022-01, 940-940.	0.0	0
2	Electrochemistry of Innocent and Noninnocent Metallocorroles. ECS Meeting Abstracts, 2022, MA2022-01, 965-965.	0.0	0
3	Bulk Heterojunction Solar Cells: Porphyrins, Dpps and Bodipys As Building Blocks for Efficient Donor Materials. ECS Meeting Abstracts, 2022, MA2022-01, 2484-2484.	0.0	0
4	Conversion of Meso-Aryl Substituted Open-Chain Pentapyrroles to Sapphyrins: Synthesis and Electrochemistry. ECS Meeting Abstracts, 2022, MA2022-01, 2513-2513.	0.0	0
5	SAW-Based Differential Sensor Exploiting Metallocorroles Properties for Selective CO Measurement. ECS Meeting Abstracts, 2022, MA2022-01, 2449-2449.	0.0	1
6	Influence of interfering gases on a carbon monoxide differential sensor based on SAW devices functionalized with cobalt and copper corroles. Sensors and Actuators B: Chemical, 2021, 332, 129507.	4.0	18
7	Multimodal Theranostic Cyanine-Conjugated Gadolinium(III) Complex for <i>In Vivo</i> Imaging of Amyloid-l² in an Alzheimer's Disease Mouse Model. ACS Applied Materials & Interfaces, 2021, 13, 18525-18532.	4.0	30
8	Electrochemistry of Innocent Cyanocobalt Corroles. ECS Meeting Abstracts, 2021, MA2021-01, 739-739.	0.0	0
9	Antipoxvirus Activity Evaluation of Optimized Corroles Based on Development of Autofluorescent ANCHOR Myxoma Virus. ACS Infectious Diseases, 2021, 7, 2370-2382.	1.8	5
10	Here's looking at the reduction of noninnocent copper corroles via anion induced electron transfer. Comptes Rendus Chimie, 2021, 24, 71-82.	0.2	5
11	Identifying G-Quadruplex-DNA-Disrupting Small Molecules. Journal of the American Chemical Society, 2021, 143, 12567-12577.	6.6	44
12	Synthesis, spectroscopic characterization, one and two-photon absorption properties and electrochemistry of -expanded BODIPYs dyes. Dyes and Pigments, 2020, 175, 108173.	2.0	17
13	Gold dipyrrin-bisphenolates: a combined experimental and DFT study of metal–ligand interactions. RSC Advances, 2020, 10, 533-540.	1.7	12
14	Synthesis, spectroscopic characterization, one and two-photon absorption properties, and electrochemistry of truxene π-expanded BODIPYs dyes. Dyes and Pigments, 2020, 176, 108183.	2.0	21
15	Synthesis and the Effect of Anions on the Spectroscopy and Electrochemistry of Mono(dimethyl) Tj ETQq1 1 C).784314 rg	BT <u> O</u> verlock
16	Porous materials applied to biomarker sensing in exhaled breath for monitoring and detecting non-invasive pathologies. Dalton Transactions, 2020, 49, 15161-15170.	1.6	11
17	Solvent and Anion Effects on the Electrochemistry of Manganese Dipyrrin-Bisphenols. Inorganic Chemistry, 2020, 59, 15913-15927.	1.9	5
18	Polymer solar cell based on ternary active layer consists of medium bandgap polymer and two non-fullerene acceptors. Solar Energy, 2020, 207, 1427-1433.	2.9	4

NICOLAS DESBOIS

#	Article	IF	CITATIONS
19	A ₃ - and A ₂ B-fluorocorroles: synthesis, X-ray characterization and antiviral activity evaluation against human cytomegalovirus infection. RSC Medicinal Chemistry, 2020, 11, 783-801.	1.7	8
20	A ₃ - and A ₂ B-nitrocorroles: synthesis and antiviral activity evaluation against human cytomegalovirus infection. RSC Medicinal Chemistry, 2020, 11, 771-782.	1.7	8
21	Recent developments in dipyrrin based metal complexes: Self-assembled nanoarchitectures and materials applications. Journal of Porphyrins and Phthalocyanines, 2020, 24, 646-661.	0.4	10
22	Old Dog, New Tricks: Innocent, Five-coordinate Cyanocobalt Corroles. Inorganic Chemistry, 2020, 59, 8562-8579.	1.9	25
23	A bacteriochlorin-diketopyrrolopyrrole triad as a donor for solution-processed bulk heterojunction organic solar cells. Journal of Materials Chemistry C, 2019, 7, 9655-9664.	2.7	5
24	Porous organic polymers based on cobalt corroles for carbon monoxide binding. Dalton Transactions, 2019, 48, 11651-11662.	1.6	20
25	Synthesis, electrochemistry, protonation and X-ray analysis of meso-aryl substituted open-chain pentapyrroles. Journal of Porphyrins and Phthalocyanines, 2019, 23, 213-222.	0.4	1
26	Near-infrared emissive bacteriochlorin-diketopyrrolopyrrole triads: Synthesis and photophysical properties. Dyes and Pigments, 2019, 160, 747-756.	2.0	15
27	Ligand Noninnocence in Cobalt Dipyrrin–Bisphenols: Spectroscopic, Electrochemical, and Theoretical Insights Indicating an Emerging Analogy with Corroles. Inorganic Chemistry, 2019, 58, 7677-7689.	1.9	19
28	BODIPY–diketopyrrolopyrrole–porphyrin conjugate small molecules for use in bulk heterojunction solar cells. Journal of Materials Chemistry A, 2018, 6, 8449-8461.	5.2	45
29	Synthesis of flexible nanotweezers with various metals and their application in carbon nanotube extraction. New Journal of Chemistry, 2018, 42, 7592-7594.	1.4	2
30	Electrochemistry of Bis(pyridine)cobalt (Nitrophenyl)corroles in Nonaqueous Media. Inorganic Chemistry, 2018, 57, 1226-1241.	1.9	25
31	Synthesis and characterization of zinc carboxy–porphyrin complexes for dye sensitized solar cells. New Journal of Chemistry, 2018, 42, 8151-8159.	1.4	10
32	Porphyrin Antenna-Enriched BODIPY–Thiophene Copolymer for Efficient Solar Cells. ACS Applied Materials & Interfaces, 2018, 10, 992-1004.	4.0	28
33	Photovoltaic Properties of a Porphyrin ontaining Polymer as Donor in Bulk Heterojunction Solar Cells With Low Energy Loss. Solar Rrl, 2018, 2, 1700168.	3.1	13
34	Cobalt Corroles with Bisâ€Ammonia or Monoâ€DMSO Axial Ligands. Electrochemical, Spectroscopic Characterizations and Ligand Binding Properties. European Journal of Inorganic Chemistry, 2018, 2018, 4265-4277.	1.0	30
35	Nonfullerene Polymer Solar Cells Reaching a 9.29% Efficiency Using a BODIPY-Thiophene Backboned Donor Material. ACS Applied Energy Materials, 2018, 1, 3359-3368.	2.5	22
36	Twoâ€Photon Absorption Properties and Structures of BODIPY and Its Dyad, Triad and Tetrad. ChemPlusChem, 2018, 83, 838-844.	1.3	14

NICOLAS DESBOIS

#	Article	IF	CITATIONS
37	Random Structural Modification of a Low-Band-Gap BODIPY-Based Polymer. Journal of Physical Chemistry C, 2017, 121, 6478-6491.	1.5	10
38	A Very Low Band Gap Diketopyrrolopyrrole–Porphyrin Conjugated Polymer. ChemPlusChem, 2017, 82, 625-630.	1.3	19
39	Protonation and Electrochemical Properties of Pyridyl―and Sulfonatophenylâ€Substituted Porphyrins in Nonaqueous Media. ChemElectroChem, 2017, 4, 1872-1884.	1.7	4
40	Porphyrins and BODIPY as Building Blocks for Efficient Donor Materials in Bulk Heterojunction Solar Cells. Solar Rrl, 2017, 1, 1700127.	3.1	62
41	Synthesis, Characterization, and Electrochemistry of Openâ€Chain Pentapyrroles and Sapphyrins with Highly Electronâ€Withdrawing <i>meso</i> â€Tetraaryl Substituents. Chemistry - A European Journal, 2017, 23, 12833-12844.	1.7	11
42	Tetracationic and Tetraanionic Manganese Porphyrins: Electrochemical and Spectroelectrochemical Characterization. Inorganic Chemistry, 2017, 56, 8045-8057.	1.9	17
43	Surface Acoustic Wave Sensors for the Detection of Hazardous Compounds in Indoor Air. Proceedings (mdpi), 2017, 1, 444.	0.2	5
44	Tuning the Electrochemistry of Freeâ€Base Porphyrins in Acidic Nonaqueous Media: Influence of Solvent, Supporting Electrolyte, and Ring Substituents. ChemElectroChem, 2016, 3, 228-241.	1.7	10
45	Electrochemical and Spectroelectrochemical Properties of Freeâ€Base Pyridyl―and <i>N</i> â€Alkylâ€4â€Pyridylporphyrins in Nonaqueous Media. ChemElectroChem, 2016, 3, 110-121.	1.7	11
46	DNA structure-specific sensitization of a metalloporphyrin leads to an efficient in vitro quadruplex detection molecular tool. New Journal of Chemistry, 2016, 40, 5683-5689.	1.4	10
47	The first example of cofacial bis(dipyrrins). New Journal of Chemistry, 2016, 40, 5835-5845.	1.4	8
48	Cyclotriveratrylene-Containing Porphyrins. Inorganic Chemistry, 2016, 55, 9230-9239.	1.9	7
49	Synthesis, Electrochemistry, and Photophysics of Azaâ€BODIPY Porphyrin Dyes. Chemistry - A European Journal, 2016, 22, 4971-4979.	1.7	25
50	Non-linear optical, electrochemical and spectroelectrochemical properties of amphiphilic inner salt porphyrinic systems. Journal of Porphyrins and Phthalocyanines, 2016, 20, 1002-1015.	0.4	2
51	Synthesis and Characterization of Carbazole‣inked Porphyrin Tweezers. Chemistry - A European Journal, 2015, 21, 12018-12025.	1.7	3
52	Easy access to heterobimetallic complexes for medical imaging applications via microwave-enhanced cycloaddition. Beilstein Journal of Organic Chemistry, 2015, 11, 2202-2208.	1.3	12
53	Surface-promoted aggregation of amphiphilic quadruplex ligands drives their selectivity for alternative DNA structures. Organic and Biomolecular Chemistry, 2015, 13, 7034-7039.	1.5	13
54	Synthesis and Antiviral Activity Evaluation of Nitroporphyrins and Nitrocorroles as Potential Agents against Human <i><i>Cytomegalovirus Infection. ACS Infectious Diseases, 2015, 1, 350-356.</i></i>	1.8	13

NICOLAS DESBOIS

#	Article	IF	CITATIONS
55	Synthetic strategy for preparation of a folate corrole DOTA heterobimetallic Cu–Gd complex as a potential bimodal contrast agent in medical imaging. Tetrahedron Letters, 2015, 56, 7128-7131.	0.7	11
56	Redox properties of nitrophenylporphyrins and electrosynthesis of nitrophenyl-linked Zn porphyrin dimers or arrays. Journal of Porphyrins and Phthalocyanines, 2014, 18, 832-841.	0.4	10
57	Porphyrinâ€Based Design of Bioinspired Multitarget Quadruplex Ligands. ChemMedChem, 2014, 9, 2035-2039.	1.6	19
58	Evaluation of two 1251-radiolabeled acridine derivatives for Auger-electron radionuclide therapy of melanoma. Investigational New Drugs, 2014, 32, 587-597.	1.2	12
59	Slow and Fast Singlet Energy Transfers in BODIPY-gallium(III)corrole Dyads Linked by Flexible Chains. Inorganic Chemistry, 2014, 53, 3392-3403.	1.9	67
60	Design of Porphyrinâ€dotaâ€Like Scaffolds as Allâ€inâ€One Multimodal Heterometallic Complexes for Medical Imaging. European Journal of Organic Chemistry, 2013, 2013, 6629-6643.	1.2	28
61	cis-Dichloroplatinum(II) complexes tethered to dibenzo[c,h][1,6]naphthyridin-6-ones: Synthesis and cytotoxicity in human cancer cell lines inÂvitro. European Journal of Medicinal Chemistry, 2013, 69, 719-727.	2.6	18
62	Convenient Synthesis of Heterocyclic Compounds with Dihydropyrano[3,4- <i>b</i>]pyridine Scaffold. Synthetic Communications, 2013, 43, 1092-1100.	1.1	5
63	Synthesis, cytotoxicity and structure-activity relationships between ester and amide functionalities in novel acridine-based platinum(II) complexes. Journal of Inorganic Biochemistry, 2012, 110, 51-57.	1.5	6
64	Evaluation of new iodinated acridine derivatives for targeted radionuclide therapy of melanoma using 1251, an Auger electron emitter. Investigational New Drugs, 2011, 29, 1253-1263.	1.2	19
65	Design and preparation of aza-analogues of benzo[c]phenanthridine framework with cytotoxic and antiplasmodial activities. European Journal of Medicinal Chemistry, 2010, 45, 2854-2859.	2.6	26
66	9: Évaluation préclinique de vecteurs dérivés acridiniques pour la radiothérapie interne du mélanom par un émetteur d'électron Auger: l'iode 125. Bulletin Du Cancer, 2010, 97, S11-S12.	1e 0.6	0
67	Simple and convenient conversion of acridones into 9-unsubstituted acridines via acridanes using borane tetrahydrofuran complex. Tetrahedron Letters, 2009, 50, 6894-6896.	0.7	8
68	Design, synthesis and preliminary biological evaluation of acridine compounds as potential agents for a combined targeted chemo-radionuclide therapy approach to melanoma. Bioorganic and Medicinal Chemistry, 2008, 16, 7671-7690.	1.4	36
69	Design, synthesis, and biological activities of conformationally restricted analogs of primaquine with a 1,10-phenanthroline framework. Bioorganic and Medicinal Chemistry Letters, 2008, 18, 4666-4669.	1.0	18
70	An efficient route to a 5,6-dihydropyrano[3,4-b]pyridin-8-one core in two steps from enaminolactones. Tetrahedron Letters, 2008, 49, 1301-1304.	0.7	4
71	Synthesis of Polyfused Heterocycle Derivatives Containing the Dipyridoimidazole Core by Friedläder's Reaction: Access to Analogs of Ellipticine. Heterocycles, 2005, 65, 1121.	0.4	16
72	Synthesis of Carbamoylpyridine and Imidazo[1,5-a]pyridin-1,3-diones via ortho-Acetalhydantoin Intermediates ChemInform, 2004, 35, no.	0.1	0

#	Article	IF	CITATIONS
73	Synthesis of carbamoylpyridine and imidazo[1,5-a]pyridin-1,3-diones via ortho-acetalhydantoin intermediates. Tetrahedron Letters, 2004, 45, 553-556.	0.7	13