
Xinghui Sun

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2948374/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	MicroRNA-181b regulates NF-κB–mediated vascular inflammation. Journal of Clinical Investigation, 2012, 122, 1973-90.	3.9	398
2	Systemic Delivery of MicroRNA-181b Inhibits Nuclear Factor-κB Activation, Vascular Inflammation, and Atherosclerosis in Apolipoprotein E–Deficient Mice. Circulation Research, 2014, 114, 32-40.	2.0	263
3	Role of miR-181 family in regulating vascular inflammation and immunity. Trends in Cardiovascular Medicine, 2014, 24, 105-112.	2.3	151
4	Emerging Roles for MicroRNAs in Diabetic Microvascular Disease: Novel Targets for Therapy. Endocrine Reviews, 2017, 38, 145-168.	8.9	141
5	miRNAs in atherosclerotic plaque initiation, progression, and rupture. Trends in Molecular Medicine, 2015, 21, 307-318.	3.5	134
6	Endothelial MicroRNAs and Atherosclerosis. Current Atherosclerosis Reports, 2013, 15, 372.	2.0	117
7	MicroRNA-181b Improves Glucose Homeostasis and Insulin Sensitivity by Regulating Endothelial Function in White Adipose Tissue. Circulation Research, 2016, 118, 810-821.	2.0	108
8	Regulation of impaired angiogenesis in diabetic dermal wound healing by microRNA-26a. Journal of Molecular and Cellular Cardiology, 2016, 91, 151-159.	0.9	93
9	Long noncoding RNA <i>SNHG12</i> integrates a DNA-PK–mediated DNA damage response and vascular senescence. Science Translational Medicine, 2020, 12, .	5.8	91
10	Kruppel-like Factor KLF10 Targets Transforming Growth Factor-β1 to Regulate CD4+CD25â^' T Cells and T Regulatory Cells. Journal of Biological Chemistry, 2009, 284, 24914-24924.	1.6	90
11	The role of interactions of long non-coding RNAs and heterogeneous nuclear ribonucleoproteins in regulating cellular functions. Biochemical Journal, 2017, 474, 2925-2935.	1.7	84
12	LncRNA Meg3 protects endothelial function by regulating the DNA damage response. Nucleic Acids Research, 2019, 47, 1505-1522.	6.5	64
13	Long non-coding RNA-mediated regulation of glucose homeostasis and diabetes. American Journal of Cardiovascular Disease, 2016, 6, 17-25.	0.5	50
14	MicroRNAâ€181b inhibits thrombinâ€mediated endothelial activation and arterial thrombosis by targeting caspase recruitment domain family member 10. FASEB Journal, 2016, 30, 3216-3226.	0.2	38
15	Therapeutic potential of garlic chive-derived vesicle-like nanoparticles in NLRP3 inflammasome-mediated inflammatory diseases. Theranostics, 2021, 11, 9311-9330.	4.6	38
16	Vascular Endothelial Senescence: Pathobiological Insights, Emerging Long Noncoding RNA Targets, Challenges and Therapeutic Opportunities. Frontiers in Physiology, 2021, 12, 693067.	1.3	29
17	New aspects of hepatic endothelial cells in physiology and nonalcoholic fatty liver disease. American Journal of Physiology - Cell Physiology, 2020, 318, C1200-C1213.	2.1	27
18	Long non-coding RNA Meg3 deficiency impairs glucose homeostasis and insulin signaling by inducing cellular senescence of hepatic endothelium in obesity. Redox Biology, 2021, 40, 101863.	3.9	27

Xinghui Sun

#	Article	IF	CITATIONS
19	Regulation of Endothelial Cell Metabolism. Arteriosclerosis, Thrombosis, and Vascular Biology, 2015, 35, 13-15.	1.1	20
20	MicroRNA-Management of Lipoprotein Homeostasis. Circulation Research, 2014, 115, 2-6.	2.0	16
21	Sestrin2 Phosphorylation by ULK1 Induces Autophagic Degradation of Mitochondria Damaged by Copper-Induced Oxidative Stress. International Journal of Molecular Sciences, 2020, 21, 6130.	1.8	12
22	Stabilin receptors clear LPS and control systemic inflammation. IScience, 2021, 24, 103337.	1.9	10
23	Methotrexate attenuates vascular inflammation through an adenosine-microRNA-dependent pathway. ELife, 2021, 10, .	2.8	9
24	NF-κB and Hypoxia. American Journal of Pathology, 2012, 181, 1513-1517.	1.9	8
25	Transcriptome analysis-identified long noncoding RNA CRNDE in maintaining endothelial cell proliferation, migration, and tube formation. Scientific Reports, 2019, 9, 19548.	1.6	6
26	Reduction of Stabilin-2 Contributes to a Protection Against Atherosclerosis. Frontiers in Cardiovascular Medicine, 2022, 9, 818662.	1.1	6
27	Endothelial cell-specific deletion of a microRNA accelerates atherosclerosis. Atherosclerosis, 2022, 350, 9-18.	0.4	4
28	An evidence for surface expression of an immunogenic epitope of sarcoplasmic/endoplasmic reticulum calcium-ATPase2a on antigen-presenting cells from naive mice in the mediation of autoimmune myocarditis. Immunobiology, 2020, 225, 151896.	0.8	3
29	Novel Lesional Transcriptional Signature Separates Atherosclerosis With and Without Diabetes in Yorkshire Swine and Humans. Arteriosclerosis, Thrombosis, and Vascular Biology, 2021, 41, 1487-1503.	1.1	1
30	Kruppel-Like Factor 10 (KLF10)-Deficient Mice Have Marked Defects In EPC Differentiation, Function, and Angiogenesis. Blood, 2010, 116, 4314-4314.	0.6	0