Marc Wieland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2948226/publications.pdf

Version: 2024-02-01

393982 552369 1,100 30 19 26 citations h-index g-index papers 30 30 30 1271 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Sentinel-1-Based Water and Flood Mapping: Benchmarking Convolutional Neural Networks Against an Operational Rule-Based Processing Chain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 2023-2036.	2.3	22
2	Towards a global seasonal and permanent reference water product from Sentinel-1/2 data for improved flood mapping. Remote Sensing of Environment, 2022, 278, 113077.	4.6	23
3	An Automatic System for Near-Real Time Flood Extent and Duration Mapping Based on Multi-Sensor Satellite Data., 2021,, 7-37.		O
4	A Deep Learning Approach for Burned Area Segmentation with Sentinel-2 Data. Remote Sensing, 2020, 12, 2422.	1.8	64
5	Large-scale surface water change observed by Sentinel-2 during the 2018 drought in Germany. International Journal of Remote Sensing, 2020, 41, 4742-4756.	1.3	34
6	Automatic Flood Duration Estimation Based on Multi-Sensor Satellite Data. Remote Sensing, 2020, 12, 643.	1.8	29
7	Automatic Near-Real Time Flood Extent and Duration Mapping based On Multi-Sensor Earth Observation Data. , 2020, , .		2
8	Urban Flood Mapping Using SAR Intensity and Interferometric Coherence via Bayesian Network Fusion. Remote Sensing, 2019, 11, 2231.	1.8	65
9	A Modular Processing Chain for Automated Flood Monitoring from Multi-Spectral Satellite Data. Remote Sensing, 2019, 11, 2330.	1.8	56
10	Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network. Remote Sensing of Environment, 2019, 230, 111203.	4.6	126
11	Urban flood mapping with an active self-learning convolutional neural network based on TerraSAR-X intensity and interferometric coherence. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152, 178-191.	4.9	125
12	Multitask Active Learning for Characterization of Built Environments With Multisensor Earth Observation Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 5583-5597.	2.3	15
13	Perspectives on global dynamic exposure modelling for geo-risk assessment. Natural Hazards, 2017, 86, 7-30.	1.6	53
14	A Spatio-Temporal Building Exposure Database and Information Life-Cycle Management Solution. ISPRS International Journal of Geo-Information, 2017, 6, 114.	1.4	14
15	Learning Change from Synthetic Aperture Radar Images: Performance Evaluation of a Support Vector Machine to Detect Earthquake and Tsunami-Induced Changes. Remote Sensing, 2016, 8, 792.	1.8	48
16	Large-area settlement pattern recognition from Landsat-8 data. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119, 294-308.	4.9	21
17	Object-based urban structure type pattern recognition from Landsat TM with a Support Vector Machine. International Journal of Remote Sensing, 2016, 37, 4059-4083.	1.3	13
18	Improving Post-Earthquake Insurance Claim Management: A Novel Approach to Prioritize Geospatial Data Collection. ISPRS International Journal of Geo-Information, 2015, 4, 2401-2427.	1.4	6

#	Article	IF	CITATIONS
19	A Multiscale Exposure Model for Seismic Risk Assessment in Central Asia. Seismological Research Letters, 2015, 86, 210-222.	0.8	30
20	Landslide susceptibility analysis in data-scarce regions: the case of Kyrgyzstan. Bulletin of Engineering Geology and the Environment, 2015, 74, 1117-1136.	1.6	35
21	Towards a cross-border exposure model for the Earthquake Model Central Asia. Annals of Geophysics, 2015, 58, .	0.5	9
22	Performance Evaluation of Machine Learning Algorithms for Urban Pattern Recognition from Multi-spectral Satellite Images. Remote Sensing, 2014, 6, 2912-2939.	1.8	94
23	Uncertainty and sensitivity analyses in seismic risk assessments on the example of Cologne, Germany. Natural Hazards and Earth System Sciences, 2014, 14, 1625-1640.	1.5	21
24	Toward a Loss-Driven Earthquake Early Warning and Rapid Response System for Kyrgyzstan (Central) Tj ETQq0 C) 0 rgBT /C	Overlock 10 Tf
25	Toward a rapid probabilistic seismic vulnerability assessment using satellite and ground-based remote sensing. Natural Hazards, 2013, 68, 115-145.	1.6	57
26	First Steps toward a Reassessment of the Seismic Risk of the City of Dushanbe (Tajikistan). Seismological Research Letters, 2013, 84, 1026-1038.	0.8	12
27	Remote sensing and omnidirectional imaging for efficient building inventory data-capturing: Application within the Earthquake Model Central Asia. , 2012 , , .		6
28	Exposure Estimation from Multi-Resolution Optical Satellite Imagery for Seismic Risk Assessment. ISPRS International Journal of Geo-Information, 2012, 1, 69-88.	1.4	26
29	Estimating building inventory for rapid seismic vulnerability assessment: Towards an integrated approach based on multi-source imaging. Soil Dynamics and Earthquake Engineering, 2012, 36, 70-83.	1.9	74
30	Change Detection-Analyse zur Bewertung der VulnerabilitĤund Schutzwirkung von StrandwĤdern im Falle des Tsunami 2004 in Thailand. Photogrammetrie, Fernerkundung, Geoinformation, 2011, 2011, 247-260.	1.2	1