
Marc Wieland

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2948226/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Multi-sensor cloud and cloud shadow segmentation with a convolutional neural network. Remote Sensing of Environment, 2019, 230, 111203.	11.0	126
2	Urban flood mapping with an active self-learning convolutional neural network based on TerraSAR-X intensity and interferometric coherence. ISPRS Journal of Photogrammetry and Remote Sensing, 2019, 152, 178-191.	11.1	125
3	Performance Evaluation of Machine Learning Algorithms for Urban Pattern Recognition from Multi-spectral Satellite Images. Remote Sensing, 2014, 6, 2912-2939.	4.0	94
4	Estimating building inventory for rapid seismic vulnerability assessment: Towards an integrated approach based on multi-source imaging. Soil Dynamics and Earthquake Engineering, 2012, 36, 70-83.	3.8	74
5	Urban Flood Mapping Using SAR Intensity and Interferometric Coherence via Bayesian Network Fusion. Remote Sensing, 2019, 11, 2231.	4.0	65
6	A Deep Learning Approach for Burned Area Segmentation with Sentinel-2 Data. Remote Sensing, 2020, 12, 2422.	4.0	64
7	Toward a rapid probabilistic seismic vulnerability assessment using satellite and ground-based remote sensing. Natural Hazards, 2013, 68, 115-145.	3.4	57
8	A Modular Processing Chain for Automated Flood Monitoring from Multi-Spectral Satellite Data. Remote Sensing, 2019, 11, 2330.	4.0	56
9	Perspectives on global dynamic exposure modelling for geo-risk assessment. Natural Hazards, 2017, 86, 7-30.	3.4	53
10	Learning Change from Synthetic Aperture Radar Images: Performance Evaluation of a Support Vector Machine to Detect Earthquake and Tsunami-Induced Changes. Remote Sensing, 2016, 8, 792.	4.0	48
11	Landslide susceptibility analysis in data-scarce regions: the case of Kyrgyzstan. Bulletin of Engineering Geology and the Environment, 2015, 74, 1117-1136.	3.5	35
12	Large-scale surface water change observed by Sentinel-2 during the 2018 drought in Germany. International Journal of Remote Sensing, 2020, 41, 4742-4756.	2.9	34
13	A Multiscale Exposure Model for Seismic Risk Assessment in Central Asia. Seismological Research Letters, 2015, 86, 210-222.	1.9	30
14	Automatic Flood Duration Estimation Based on Multi-Sensor Satellite Data. Remote Sensing, 2020, 12, 643.	4.0	29
15	Exposure Estimation from Multi-Resolution Optical Satellite Imagery for Seismic Risk Assessment. ISPRS International Journal of Geo-Information, 2012, 1, 69-88.	2.9	26
16	Towards a global seasonal and permanent reference water product from Sentinel-1/2 data for improved flood mapping. Remote Sensing of Environment, 2022, 278, 113077.	11.0	23
17	Sentinel-1-Based Water and Flood Mapping: Benchmarking Convolutional Neural Networks Against an Operational Rule-Based Processing Chain. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2022, 15, 2023-2036.	4.9	22
18	Uncertainty and sensitivity analyses in seismic risk assessments on the example of Cologne, Germany. Natural Hazards and Earth System Sciences, 2014, 14, 1625-1640.	3.6	21

#	Article	IF	CITATIONS
19	Large-area settlement pattern recognition from Landsat-8 data. ISPRS Journal of Photogrammetry and Remote Sensing, 2016, 119, 294-308.	11.1	21

Toward a Loss-Driven Earthquake Early Warning and Rapid Response System for Kyrgyzstan (Central) Tj ETQq0 0 0 rgBT /Overlock 10 Tf

21	Multitask Active Learning for Characterization of Built Environments With Multisensor Earth Observation Data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2017, 10, 5583-5597.	4.9	15
22	A Spatio-Temporal Building Exposure Database and Information Life-Cycle Management Solution. ISPRS International Journal of Geo-Information, 2017, 6, 114.	2.9	14
23	Object-based urban structure type pattern recognition from Landsat TM with a Support Vector Machine. International Journal of Remote Sensing, 2016, 37, 4059-4083.	2.9	13
24	First Steps toward a Reassessment of the Seismic Risk of the City of Dushanbe (Tajikistan). Seismological Research Letters, 2013, 84, 1026-1038.	1.9	12
25	Towards a cross-border exposure model for the Earthquake Model Central Asia. Annals of Geophysics, 2015, 58, .	1.0	9
26	Remote sensing and omnidirectional imaging for efficient building inventory data-capturing: Application within the Earthquake Model Central Asia. , 2012, , .		6
27	Improving Post-Earthquake Insurance Claim Management: A Novel Approach to Prioritize Geospatial Data Collection. ISPRS International Journal of Geo-Information, 2015, 4, 2401-2427.	2.9	6
28	Automatic Near-Real Time Flood Extent and Duration Mapping based On Multi-Sensor Earth Observation Data. , 2020, , .		2
29	Change Detection-Analyse zur Bewertung der Vulnerabilitäund Schutzwirkung von StrandwA¤lern im Falle des Tsunami 2004 in Thailand. Photogrammetrie, Fernerkundung, Geoinformation, 2011, 2011, 247-260.	1.2	1
30	An Automatic System for Near-Real Time Flood Extent and Duration Mapping Based on Multi-Sensor Satellite Data. , 2021, , 7-37.		0