Cristina MartÃ-nez-Villaluenga

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2948191/publications.pdf

Version: 2024-02-01

140 papers 6,562 citations

46918 47 h-index 76769 74 g-index

144 all docs 144 docs citations

144 times ranked 6257 citing authors

#	Article	IF	CITATIONS
1	A Review of Colorectal Cancer in Terms of Epidemiology, Risk Factors, Development, Symptoms and Diagnosis. Cancers, 2021, 13, 2025.	1.7	299
2	The future of lupin as a protein crop in Europe. Frontiers in Plant Science, 2015, 6, 705.	1.7	203
3	Release of dipeptidyl peptidase IV, α-amylase and α-glucosidase inhibitory peptides from quinoa (Chenopodium quinoa Willd.) during in vitro simulated gastrointestinal digestion. Journal of Functional Foods, 2017, 35, 531-539.	1.6	174
4	Antioxidant and antihypertensive properties of liquid and solid state fermented lentils. Food Chemistry, 2013, 136, 1030-1037.	4.2	173
5	Immunoreactivity reduction of soybean meal by fermentation, effect on amino acid composition and antigenicity of commercial soy products. Food Chemistry, 2008, 108, 571-581.	4.2	171
6	Pseudocereal grains: Nutritional value, health benefits and current applications for the development of gluten-free foods. Food and Chemical Toxicology, 2020, 137, 111178.	1.8	161
7	Seed Protein of Lentils: Current Status, Progress, and Food Applications. Foods, 2019, 8, 391.	1.9	157
8	Immunoreactivity and Amino Acid Content of Fermented Soybean Products. Journal of Agricultural and Food Chemistry, 2008, 56, 99-105.	2.4	152
9	Alpha-Galactosides: Antinutritional Factors or Functional Ingredients?. Critical Reviews in Food Science and Nutrition, 2008, 48, 301-316.	5.4	140
10	High-pressure improves enzymatic proteolysis and the release of peptides with angiotensin I converting enzyme inhibitory and antioxidant activities from lentil proteins. Food Chemistry, 2015, 171, 224-232.	4.2	140
11	Peptides derived from in vitro gastrointestinal digestion of germinated soybean proteins inhibit human colon cancer cells proliferation and inflammation. Food Chemistry, 2018, 242, 75-82.	4.2	139
12	Effects of germination on the nutritive value and bioactive compounds of brown rice breads. Food Chemistry, 2015, 173, 298-304.	4.2	137
13	Optimization of conditions for galactooligosaccharide synthesis during lactose hydrolysis by β-galactosidase from Kluyveromyces lactis (Lactozym 3000 L HP G). Food Chemistry, 2008, 107, 258-264.	4.2	135
14	Fermentation enhances the content of bioactive compounds in kidney bean extracts. Food Chemistry, 2015, 172, 343-352.	4.2	125
15	Betalain profile, content and antioxidant capacity of red beetroot dependent on the genotype and root part. Journal of Functional Foods, 2016, 27, 249-261.	1.6	120
16	Identification, functional gastrointestinal stability and molecular docking studies of lentil peptides with dual antioxidant and angiotensin I converting enzyme inhibitory activities. Food Chemistry, 2017, 221, 464-472.	4.2	114
17	Bioactive Peptides from Germinated Soybean with Anti-Diabetic Potential by Inhibition of Dipeptidyl Peptidase-IV, α-Amylase, and α-Glucosidase Enzymes. International Journal of Molecular Sciences, 2018, 19, 2883.	1.8	112
18	Health benefits of oat: current evidence and molecular mechanisms. Current Opinion in Food Science, 2017, 14, 26-31.	4.1	111

#	Article	IF	CITATIONS
19	Functional lupin seeds (Lupinus albus L. and Lupinus luteus L.) after extraction of \hat{l}_{\pm} -galactosides. Food Chemistry, 2006, 98, 291-299.	4.2	107
20	Maximising the phytochemical content and antioxidant activity of Ecuadorian brown rice sprouts through optimal germination conditions. Food Chemistry, 2014, 152, 407-414.	4.2	106
21	Phenolic composition, antioxidant and anti-inflammatory activities of extracts from Moroccan Opuntia ficus-indica flowers obtained by different extraction methods. Industrial Crops and Products, 2014, 62, 412-420.	2.5	91
22	Food safety evaluation of broccoli and radish sprouts. Food and Chemical Toxicology, 2008, 46, 1635-1644.	1.8	84
23	Influence of Fermentation Conditions on Glucosinolates, Ascorbigen, and Ascorbic Acid Content in White Cabbage (<i>Brassica oleracea</i> var. <i>capitata</i> cv. Taler) Cultivated in Different Seasons. Journal of Food Science, 2009, 74, C62-7.	1.5	84
24	Time dependence of bioactive compounds and antioxidant capacity during germination of different cultivars of broccoli and radish seeds. Food Chemistry, 2010, 120, 710-716.	4.2	81
25	Savinase, the Most Suitable Enzyme for Releasing Peptides from Lentil (<i>Lens culinaris</i> var.) Tj ETQq1 1 0.78 Chemistry, 2014, 62, 4166-4174.	4314 rgB1 2.4	「/Overlock 81
26	Enzymatic Synthesis and Identification of Two Trisaccharides Produced from Lactulose by Transgalactosylation. Journal of Agricultural and Food Chemistry, 2008, 56, 557-563.	2.4	77
27	The effects of boiling and fermentation on betalain profiles and antioxidant capacities of red beetroot products. Food Chemistry, 2018, 259, 292-303.	4.2	76
28	Protein hydrolysates from β onglycinin enriched soybean genotypes inhibit lipid accumulation and inflammation <i>in vitro </i> in. Molecular Nutrition and Food Research, 2009, 53, 1007-1018.	1.5	75
29	Simultaneous release of peptides and phenolics with antioxidant, ACE-inhibitory and anti-inflammatory activities from pinto bean (Phaseolus vulgaris L. var. pinto) proteins by subtilisins. Journal of Functional Foods, 2015, 18, 319-332.	1.6	72
30	Effect of germination and elicitation on phenolic composition and bioactivity of kidney beans. Food Research International, 2015, 70, 55-63.	2.9	70
31	Sprouted Barley Flour as a Nutritious and Functional Ingredient. Foods, 2020, 9, 296.	1.9	69
32	Fermentation of soybean meal and its inclusion in diets for newly weaned pigs reduced diarrhea and measures of immunoreactivity in the plasma. Animal Feed Science and Technology, 2010, 159, 41-49.	1.1	67
33	Peptides and isoflavones in gastrointestinal digests contribute to the anti-inflammatory potential of cooked or germinated desi and kabuli chickpea (Cicer arietinum L.). Food Chemistry, 2018, 268, 66-76.	4.2	67
34	Effect of germination on the protein fraction composition of different lupin seeds. Food Chemistry, 2008, 107, 830-844.	4.2	65
35	\hat{l}^2 -Conglycinin Embeds Active Peptides That Inhibit Lipid Accumulation in 3T3-L1 Adipocytes in Vitro. Journal of Agricultural and Food Chemistry, 2008, 56, 10533-10543.	2.4	65
36	Peptides from purified soybean βâ€conglycinin inhibit fatty acid synthase by interaction with the thioesterase catalytic domain. FEBS Journal, 2010, 277, 1481-1493.	2.2	64

#	Article	IF	CITATIONS
37	Influence of addition of raffinose family oligosaccharides on probiotic survival in fermented milk during refrigerated storage. International Dairy Journal, 2006, 16, 768-774.	1.5	61
38	Optimization of germination time and temperature to maximize the content of bioactive compounds and the antioxidant activity of purple corn (Zea mays L.) by response surface methodology. LWT - Food Science and Technology, 2017, 76, 236-244.	2,5	59
39	Raffinose family oligosaccharides and sucrose contents in 13 Spanish lupin cultivars. Food Chemistry, 2005, 91, 645-649.	4.2	57
40	Antioxidant capacity and polyphenolic content of high-protein lupin products. Food Chemistry, 2009, 112, 84-88.	4.2	55
41	Multifunctional Properties of Soy Milk Fermented by Enterococcus faecium Strains Isolated from Raw Soy Milk. Journal of Agricultural and Food Chemistry, 2012, 60, 10235-10244.	2.4	54
42	Bifidogenic effect and stimulation of short chain fatty acid production in human faecal slurry cultures by oligosaccharides derived from lactose and lactulose. Journal of Dairy Research, 2009, 76, 317-325.	0.7	53
43	Se improves indole glucosinolate hydrolysis products content, Se-methylselenocysteine content, antioxidant capacity and potential anti-inflammatory properties of sauerkraut. Food Chemistry, 2012, 132, 907-914.	4.2	53
44	Role of elicitation on the health-promoting properties of kidney bean sprouts. LWT - Food Science and Technology, 2014, 56, 328-334.	2.5	53
45	Enhancement of biologically active compounds in germinated brown rice and the effect of sun-drying. Journal of Cereal Science, 2017, 73, 1-9.	1.8	53
46	High-Pressure-Assisted Enzymatic Release of Peptides and Phenolics Increases Angiotensin Converting Enzyme I Inhibitory and Antioxidant Activities of Pinto Bean Hydrolysates. Journal of Agricultural and Food Chemistry, 2016, 64, 1730-1740.	2.4	52
47	Synthesis of Oligosaccharides Derived from Lactulose and Pectinex Ultra SP-L. Journal of Agricultural and Food Chemistry, 2008, 56, 3328-3333.	2.4	47
48	Kinetics of free protein amino acids, free non-protein amino acids and trigonelline in soybean (Glycine) Tj ETQq 224, 177-186.	0 0 0 rgBT / 1.6	Overlock 10 7 46
49	Development of a multifunctional yogurt-like product from germinated brown rice. LWT - Food Science and Technology, 2019, 99, 306-312.	2.5	46
50	Raffinose Family of Oligosaccharides from Lupin Seeds as Prebiotics: Application in Dairy Products. Journal of Food Protection, 2005, 68, 1246-1252.	0.8	44
51	Release of multifunctional peptides from kiwicha (<i>Amaranthus caudatus</i>) protein under <i>in vitro</i> gastrointestinal digestion. Journal of the Science of Food and Agriculture, 2019, 99, 1225-1232.	1.7	41
52	Sprouted oat as a potential gluten-free ingredient with enhanced nutritional and bioactive properties. Food Chemistry, 2021, 338, 127972.	4.2	41
53	White cabbage fermentation improves ascorbigen content, antioxidant and nitric oxide production inhibitory activity in LPS-induced macrophages. LWT - Food Science and Technology, 2012, 46, 77-83.	2.5	40
54	Non-Nutritive Compounds in Fabaceae Family Seeds and the Improvement of Their Nutritional Quality by Traditional Processing – a Review. Polish Journal of Food and Nutrition Sciences, 2014, 64, 75-89.	0.6	40

#	Article	IF	Citations
55	Response surface optimisation of germination conditions to improve the accumulation of bioactive compounds and the antioxidant activity in quinoa. International Journal of Food Science and Technology, 2018, 53, 516-524.	1.3	39
56	The Profile of Polyphenolic Compounds, Contents of Total Phenolics and Flavonoids, and Antioxidant and Antimicrobial Properties of Bee Products. Molecules, 2022, 27, 1301.	1.7	39
57	Assessment of protein fractions of three cultivars of Pisum sativum L.: effect of germination. European Food Research and Technology, 2008, 226, 1465-1478.	1.6	38
58	Semolina supplementation with processed lupin and pigeon pea flours improve protein quality of pasta. LWT - Food Science and Technology, 2010, 43, 617-622.	2.5	38
59	Characterization of bifidobacteria as starters in fermented milk containing raffinose family of oligosaccharides from lupin as prebiotic. International Dairy Journal, 2007, 17, 116-122.	1.5	37
60	Updating the research on the chemopreventive and therapeutic role of the peptide lunasin. Journal of the Science of Food and Agriculture, 2018, 98, 2070-2079.	1.7	37
61	Effect of Flour Extraction Rate and Baking on Thiamine and Riboflavin Content and Antioxidant Capacity of Traditional Rye Bread. Journal of Food Science, 2009, 74, C49-55.	1.5	36
62	Bioactive Compounds, Myrosinase Activity, and Antioxidant Capacity of White Cabbages Grown in Different Locations of Spain. Journal of Agricultural and Food Chemistry, 2011, 59, 3772-3779.	2.4	35
63	Effect of Dry Heat Puffing on Nutritional Composition, Fatty Acid, Amino Acid and Phenolic Profiles of Pseudocereals Grains. Polish Journal of Food and Nutrition Sciences, 2018, 68, 289-297.	0.6	34
64	Gas chromatographic–mass spectrometric analysis of galactosyl derivatives obtained by the action of two different β-galactosidases. Food Chemistry, 2009, 114, 1099-1105.	4.2	33
65	Study of galactooligosaccharide composition in commercial fermented milks. Journal of Food Composition and Analysis, 2008, 21, 540-544.	1.9	32
66	A Multistrategic Approach in the Development of Sourdough Bread Targeted Towards Blood Pressure Reduction. Plant Foods for Human Nutrition, 2015, 70, 97-103.	1.4	32
67	pH-controlled fermentation in mild alkaline conditions enhances bioactive compounds and functional features of lentil to ameliorate metabolic disturbances. Food Chemistry, 2018, 248, 262-271.	4.2	31
68	The effect of processing and in vitro digestion on the betalain profile and ACE inhibition activity of red beetroot products. Journal of Functional Foods, 2019, 55, 229-237.	1.6	31
69	Impact of Elicitation on Antioxidant and Potential Antihypertensive Properties of Lentil Sprouts. Plant Foods for Human Nutrition, 2015, 70, 401-407.	1.4	30
70	Wheat and Oat Brans as Sources of Polyphenol Compounds for Development of Antioxidant Nutraceutical Ingredients. Foods, 2021, 10, 115.	1.9	30
71	Individual contributions of Savinase and Lactobacillus plantarum to lentil functionalization during alkaline pH-controlled fermentation. Food Chemistry, 2018, 257, 341-349.	4.2	29
72	Purification, Thermal Stability, and Antigenicity of the Immunodominant Soybean Allergen P34 in Soy Cultivars, Ingredients, and Products. Journal of Food Science, 2008, 73, T106-14.	1.5	28

#	Article	IF	CITATIONS
73	InÂvitro approach for evaluation of carob by-products as source bioactive ingredients with potential to attenuate metabolic syndrome (MetS). Heliyon, 2019, 5, e01175.	1.4	28
74	Fatty acid synthase and in vitro adipogenic response of human adipocytes inhibited by \hat{l}_{\pm} and \hat{l}_{\pm} subunits of soybean \hat{l}_{\pm} -conglycinin hydrolysates. Food Chemistry, 2010, 119, 1571-1577.	4.2	26
7 5	Biogenic amines and HL60 citotoxicity of alfalfa and fenugreek sprouts. Food Chemistry, 2007, 105, 959-967.	4.2	25
76	Influence of Germination with Different Selenium Solutions on Nutritional Value and Cytotoxicity of Lupin Seeds. Journal of Agricultural and Food Chemistry, 2009, 57, 1319-1325.	2.4	25
77	Optimizing germination conditions to enhance the accumulation of bioactive compounds and the antioxidant activity of kiwicha (Amaranthus caudatus) using response surface methodology. LWT - Food Science and Technology, 2017, 76, 245-252.	2.5	25
78	Enzyme Selection and Hydrolysis under Optimal Conditions Improved Phenolic Acid Solubility, and Antioxidant and Anti-Inflammatory Activities of Wheat Bran. Antioxidants, 2020, 9, 984.	2.2	25
79	Soluble Phenolic Composition Tailored by Germination Conditions Accompany Antioxidant and Anti-Inflammatory Properties of Wheat. Antioxidants, 2020, 9, 426.	2.2	25
80	Assessment on Proximate Composition, Dietary Fiber, Phytic Acid and Protein Hydrolysis of Germinated Ecuatorian Brown Rice. Plant Foods for Human Nutrition, 2014, 69, 261-267.	1.4	24
81	Sauerkraut. , 2017, , 557-576.		24
82	Bioactive Peptides in Fermented Foods. , 2017, , 23-47.		23
83	Bioprocessed Wheat Ingredients: Characterization, Bioaccessibility of Phenolic Compounds, and Bioactivity During in vitro Digestion. Frontiers in Plant Science, 2021, 12, 790898.	1.7	23
84	A Novel Strategy to Produce a Soluble and Bioactive Wheat Bran Ingredient Rich in Ferulic Acid. Antioxidants, 2021, 10, 969.	2.2	22
85	Production and Characterization of a Novel Gluten-Free Fermented Beverage Based on Sprouted Oat Flour. Foods, 2021, 10, 139.	1.9	21
86	Characterizing the Volatile and Sensory Profiles, and Sugar Content of Beeswax, Beebread, Bee Pollen, and Honey. Molecules, 2021, 26, 3410.	1.7	21
87	Effect of reaction conditions on lactulose-derived trisaccharides obtained by transgalactosylation with \hat{l}^2 -galactosidase of Kluyveromyces lactis. European Food Research and Technology, 2011, 233, 89-94.	1.6	20
88	The Impact of the Method Extraction and Different Carrot Variety on the Carotenoid Profile, Total Phenolic Content and Antioxidant Properties of Juices. Plants, 2020, 9, 1759.	1.6	20
89	Application of Autoclave Treatment for Development of a Natural Wheat Bran Antioxidant Ingredient. Foods, 2020, 9, 781.	1.9	20
	Products and Biopreparations from Alkaloid-rich Lupin in Animal Nutrition and Ecological	0.1	19

#	Article	IF	CITATIONS
91	Effects of oligosaccharide removing procedure on the protein profiles of lupin seeds. European Food Research and Technology, 2006, 223, 691-696.	1.6	19
92	Improved Method To Obtain Pure α-Galactosides from Lupin Seeds. Journal of Agricultural and Food Chemistry, 2004, 52, 6920-6922.	2.4	18
93	Using the SPE and Micro-HPLC-MS/MS Method for the Analysis of Betalains in Rat Plasma after Red Beet Administration. Molecules, 2017, 22, 2137.	1.7	18
94	Advances in Production, Properties and Applications of Sprouted Seeds. Foods, 2020, 9, 790.	1.9	18
95	Quantification of Human IgE Immunoreactive Soybean Proteins in Commercial Soy Ingredients and Products. Journal of Food Science, 2008, 73, T90-9.	1.5	17
96	Changes in Nutritional Value and Cytotoxicity of Garden Cress Germinated with Different Selenium Solutions. Journal of Agricultural and Food Chemistry, 2010, 58, 2331-2336.	2.4	17
97	Characterization and in vitro evaluation of seaweed species as potential functional ingredients to ameliorate metabolic syndrome. Journal of Functional Foods, 2018, 46, 185-194.	1.6	17
98	Combination of pH-controlled fermentation in mild acidic conditions and enzymatic hydrolysis by Savinase to improve metabolic health-promoting properties of lentil. Journal of Functional Foods, 2018, 48, 9-18.	1.6	17
99	Changes in protein profile, bioactive potential and enzymatic activities of gluten-free flours obtained from hulled and dehulled oat varieties as affected by germination conditions. LWT - Food Science and Technology, 2020, 134, 109955.	2.5	17
100	Lentil and Fava Bean With Contrasting Germination Kinetics: A Focus on Digestion of Proteins and Bioactivity of Resistant Peptides. Frontiers in Plant Science, 2021, 12, 754287.	1.7	17
101	Impact of Protein Content on the Antioxidants, Anti-Inflammatory Properties and Glycemic Index of Wheat and Wheat Bran. Foods, 2022, 11, 2049.	1.9	17
102	Fermented Pulses in Nutrition and Health Promotion. , 2017, , 385-416.		16
103	Pasta products enriched with moringa sprout powder as nutritive dense foods with bioactive potential. Food Chemistry, 2021, 360, 130032.	4.2	16
104	Improvement in food intake and nutritive utilization of protein from Lupinus albus var. multolupa protein isolates supplemented with ascorbic acid. Food Chemistry, 2007, 103, 944-951.	4.2	15
105	Carob by-products and seaweeds for the development of functional bread. Journal of Food Processing and Preservation, 2018, 42, e13700.	0.9	15
106	Peptides for Health Benefits 2019. International Journal of Molecular Sciences, 2020, 21, 2543.	1.8	15
107	Fermented soyabean products as hypoallergenic food. Proceedings of the Nutrition Society, 2008, 67, .	0.4	12
108	Effect of flour extraction rate and baking process on vitamin B1 and B2 contents and antioxidant activity of ginger-based products. European Food Research and Technology, 2009, 230, 119-124.	1.6	11

#	Article	IF	Citations
109	Evaluation of refrigerated storage in nitrogen-enriched atmospheres on the microbial quality, content of bioactive compounds and antioxidant activity of sauerkrauts. LWT - Food Science and Technology, 2015, 61, 463-470.	2.5	11
110	Potential of Germination in Selected Conditions to Improve the Nutritional and Bioactive Properties of Moringa (Moringa oleifera L.). Foods, 2020, 9, 1639.	1.9	11
111	Characterisation of the total phenolic, vitamins C and E content and antioxidant properties of the beebread and honey from the same batch. Czech Journal of Food Sciences, 2020, 38, 158-163.	0.6	11
112	Study of Influential Factors on Oligosaccharide Formation by Fructosyltransferase Activity during Stachyose Hydrolysis by Pectinex Ultra SP-L. Journal of Agricultural and Food Chemistry, 2011, 59, 10705-10711.	2.4	10
113	Potential Usefulness of a Wakame/Carob Functional Snack for the Treatment of Several Aspects of Metabolic Syndrome: From In Vitro to In Vivo Studies. Marine Drugs, 2018, 16, 512.	2.2	10
114	Pilot-scale produced fermented lentil protects against t-BHP-triggered oxidative stress by activation of Nrf2 dependent on SAPK/JNK phosphorylation. Food Chemistry, 2019, 274, 750-759.	4.2	10
115	Development of Antioxidant and Nutritious Lentil (Lens culinaris) Flour Using Controlled Optimized Germination as a Bioprocess. Foods, 2021, 10, 2924.	1.9	10
116	Influence of Lupin (Lupinus luteusL. cv. 4492 and Lupinus angustifoliusL. var. zapaton) and Fenugreek (Trigonella foenum-graecumL.) Germination on Microbial Population and Biogenic Amines. Journal of Agricultural and Food Chemistry, 2006, 54, 7391-7398.	2.4	8
117	Protein Quality of Traditional Rye Breads and Ginger Cakes as Affected by the Incorporation of Flour with Different Extraction Rates. Polish Journal of Food and Nutrition Sciences, 2013, 63, 5-10.	0.6	8
118	The Application of Lamiaceae Lindl. Promotes Aroma Compounds Formation, Sensory Properties, and Antioxidant Activity of Oat and Buckwheat-Based Cookies. Molecules, 2020, 25, 5626.	1.7	8
119	Reformulating Bread Using Sprouted Pseudo-cereal Grains to Enhance Its Nutritional Value and Sensorial Attributes. Foods, 2022, 11, 1541.	1.9	8
120	Performance of Thermoplastic Extrusion, Germination, Fermentation, and Hydrolysis Techniques on Phenolic Compounds in Cereals and Pseudocereals. Foods, 2022, 11, 1957.	1.9	8
121	Food Bioactive Compounds against Diseases of the 21st Century 2016. BioMed Research International, 2017, 2017, 1-2.	0.9	7
122	A Novel Sprouted Oat Fermented Beverage: Evaluation of Safety and Health Benefits for Celiac Individuals. Nutrients, 2021, 13, 2522.	1.7	7
123	Free and conjugated phenolic compounds profile and antioxidant activities of honeybee products of polish origin. European Food Research and Technology, 2022, 248, 2263-2273.	1.6	7
124	Synthesis of [77Se]-methylselenocysteine when preparing sauerkraut in the presence of [77Se]-selenite. Metabolic transformation of [77Se]-methylselenocysteine in Wistar rats determined by LC–IDA–ICP–MS. Analytical and Bioanalytical Chemistry, 2014, 406, 7949-7958.	1.9	6
125	A comparative study on the phenolic bioaccessibility, antioxidant and inhibitory effects on carbohydrate-digesting enzymes of maca and mashua powders. LWT - Food Science and Technology, 2020, 131, 109798.	2.5	6
126	Characterization of the phenolic acid profile and <i>in vitro</i> bioactive properties of white beetroot products. International Journal of Food Science and Technology, 2021, 56, 629-638.	1.3	6

#	Article	IF	CITATIONS
127	Improving Nutritional and Health Benefits of Biscuits by Optimizing Formulations Based on Sprouted Pseudocereal Grains. Foods, 2022, 11, 1533.	1.9	5
128	The Effect of Low Doses of Zearalenone (ZEN) on the Bone Marrow Microenvironment and Haematological Parameters of Blood Plasma in Pre-Pubertal Gilts. Toxins, 2022, 14, 105.	1.5	4
129	Effects of a snack enriched with carob and Undaria pinnatifida (wakame) on metabolic parameters in a double blind, randomized clinical trial in obese patients. Nutricion Hospitalaria, 2020, 34, 465-473.	0.2	4
130	Raffinose family oligosaccharides of lupin (<i>Lupinus albus</i> L. cv multolupa) as a potential prebiotic. Proceedings of the Nutrition Society, 2008, 67, .	0.4	3
131	Association Between Mycotoxin Exposure and Dietary Habits in Colorectal Cancer Development Among a Polish Population: A Study Protocol. International Journal of Environmental Research and Public Health, 2020, 17, 698.	1.2	3
132	Manufacture of healthy snack bars supplemented with moringa sprout powder. LWT - Food Science and Technology, 2022, 154, 112828.	2. 5	2
133	Current evidence on the modulatory effects of food proteins and peptides in inflammation and gut microbiota., 2022,, 517-534.		2
134	Synthesis of galactooligosaccharides with prebiotic potential during hydrolysis of lactose by Lactozym 3000 L HP G. Proceedings of the Nutrition Society, 2008, 67, .	0.4	1
135	Low glycinin soymilk ameliorates body fat accumulation and improves serum antioxidant status in overweight men. FASEB Journal, 2010, 24, 721.3.	0.2	1
136	Role of cereal bioactive compounds in the prevention of age-related diseases. , 2022, , 247-286.		1
137	Effect of Time and Legume Type on Germination-Induced Proteolysis of Lentils and Faba Beans. Proceedings (mdpi), 2020, 70, .	0.2	1
138	CHAPTER 9. Impact of Fermentation on the Nutritional Quality, Bioactive Compounds and Potential Health Properties of Legumes. Food Chemistry, Function and Analysis, 2019, , 196-214.	0.1	0
139	Development of Sliced Bread with Better Nutritional Quality: Optimization of Wheat Flour Replacement with Germinated Pseudocereals for Doughs with Better Rheological Properties. Proceedings (mdpi), 2021, 70, 12.	0.2	0
140	Peptides for Health Benefits 2020. International Journal of Molecular Sciences, 2022, 23, 6699.	1.8	0