
Jaisree Iyer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2947548/publications.pdf Version: 2024-02-01

LAISDEE IVED

#	Article	IF	CITATIONS
1	Heat transfer and pressure drop characteristics of heat exchangers based on triply periodic minimal and periodic nodal surfaces. Applied Thermal Engineering, 2022, 209, 118192.	6.0	49
2	Influence of Chemical, Mechanical, and Transport Processes on Wellbore Leakage from Geologic CO ₂ Storage Reservoirs. Accounts of Chemical Research, 2017, 50, 1829-1837.	15.6	39
3	Effect of thermal stress on wellbore integrity during CO2 injection. International Journal of Greenhouse Gas Control, 2018, 77, 14-26.	4.6	38
4	Incorporating reaction-rate dependence in reaction-front models of wellbore-cement/carbonated-brine systems. International Journal of Greenhouse Gas Control, 2017, 59, 160-171.	4.6	30
5	Assessment of two-phase flow on the chemical alteration and sealing of leakage pathways in cemented wellbores. International Journal of Greenhouse Gas Control, 2018, 69, 72-80.	4.6	21
6	Real Time 3D Observations of Portland Cement Carbonation at CO ₂ Storage Conditions. Environmental Science & Technology, 2020, 54, 8323-8332.	10.0	21
7	Are Ellipsoids Feasible Micelle Shapes? An Answer Based on a Molecular-Thermodynamic Model of Nonionic Surfactant Micelles. Journal of Physical Chemistry B, 2012, 116, 6443-6454.	2.6	18
8	A Review of Well Integrity Based on Field Experience at Carbon Utilization and Storage Sites. International Journal of Greenhouse Gas Control, 2022, 113, 103533.	4.6	12
9	Computer Simulation–Molecular-Thermodynamic Framework to Predict the Micellization Behavior of Mixtures of Surfactants: Application to Binary Surfactant Mixtures. Journal of Physical Chemistry B, 2013, 117, 6430-6442.	2.6	11
10	Molecular-Thermodynamic Framework to Predict the Micellization Behavior of Mixtures of Fluorocarbon-Based and Hydrocarbon-Based Surfactants. Journal of Physical Chemistry B, 2014, 118, 2377-2388.	2.6	8
11	Impact of Chemical and Mechanical Processes on Leakage from Damaged Wells in CO2 Storage Sites. Environmental Science & Technology, 2020, 54, 1196-1203.	10.0	6
12	Geochemical narrowing of cement fracture aperture during multiphase flow of supercritical CO2 and brine. International Journal of Greenhouse Gas Control, 2020, 95, 102978.	4.6	5
13	Assessment of Thermal Stress on Well Integrity as a Function of Size and Material Properties. Energy Procedia, 2017, 114, 5241-5248.	1.8	3
14	Microbial Carbonation of Monocalcium Silicate. ACS Omega, 2022, 7, 12524-12535.	3.5	1