Juan Moral Moral

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2947064/publications.pdf

Version: 2024-02-01

516710 526287 30 787 16 27 citations g-index h-index papers 30 30 30 717 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Resistance to <i>Aspergillus flavus</i> and <i>Aspergillus parasiticus</i> in Almond Advanced Selections and Cultivars and Its Interaction with the Aflatoxin Biocontrol Strategy. Plant Disease, 2022, 106, 504-509.	1.4	2
2	Characterization of Colletotrichum strains associated with olive anthracnose in Sicily. Phytopathologia Mediterranea, 2022, 61, 139-151.	1.3	3
3	Effect of latent and symptomatic infections by Colletotrichum godetiae on oil quality. European Journal of Plant Pathology, 2022, 163, 545-556.	1.7	6
4	First Report of <i>Colletotrichum karstii</i> Causing Fruit Anthracnose of <i>Carissa grandiflora</i> in Spain. Plant Disease, 2021, 105, 492-492.	1.4	2
5	Quantification of the Aflatoxin Biocontrol Strain <i>Aspergillus flavus</i> AF36 in Soil and in Nuts and Leaves of Pistachio by Real-Time PCR. Plant Disease, 2021, 105, 1657-1665.	1.4	6
6	Diversity of Colletotrichum Species Associated with Olive Anthracnose Worldwide. Journal of Fungi (Basel, Switzerland), 2021, 7, 741.	3.5	17
7	Logistic models to predict olive anthracnose under field conditions. Crop Protection, 2021, 148, 105714.	2.1	5
8	Effect of Cultivar Resistance and Soil Management on Spatial–Temporal Development of Verticillium Wilt of Olive: A Long-Term Study. Frontiers in Plant Science, 2020, 11, 584496.	3.6	12
9	Present Status and Perspective on the Future Use of Aflatoxin Biocontrol Products. Agronomy, 2020, 10, 491.	3.0	61
10	Management of Botryosphaeria canker and blight diseases of temperate zone nut crops. Crop Protection, 2019, 126, 104927.	2.1	20
11	ldentification and Characterization of <i>Neofabraea kienholzii</i> and <i>Phlyctema vagabunda</i> Causing Leaf and Shoot Lesions of Olive in California. Plant Disease, 2019, 103, 3018-3030.	1.4	13
12	Ecology and Epidemiology of Diseases of Nut Crops and Olives Caused by Botryosphaeriaceae Fungi in California and Spain. Plant Disease, 2019, 103, 1809-1827.	1.4	53
13	Atoxigenic <i>Aspergillus flavus </i> Isolates Endemic to Almond, Fig, and Pistachio Orchards in California with Potential to Reduce Aflatoxin Contamination in these Crops. Plant Disease, 2019, 103, 905-912.	1.4	33
14	Interaction Between <i>Diaporthe rhusicola</i> and <i>Neofusicoccum mediterraneum</i> Causing Branch Dieback and Fruit Blight of English Walnut in California, and the Effect of Pruning Wounds on the Infection. Plant Disease, 2019, 103, 1196-1205.	1.4	17
15	Characterization of Argentinian Endemic <i>Aspergillus flavus</i> Isolates and Their Potential Use as Biocontrol Agents for Mycotoxins in Maize. Phytopathology, 2018, 108, 818-828.	2.2	19
16	Preliminary selection and evaluation of fungicides and natural compounds to control olive anthracnose caused by Colletotrichum species. Crop Protection, 2018, 114, 167-176.	2.1	29
17	Fungal communities associated with almond throughout crop development: Implications for aflatoxin biocontrol management in California. PLoS ONE, 2018, 13, e0199127.	2.5	18
18	A long-term study on the effect of agroclimatic variables on olive scab in Spain. Crop Protection, 2018, 114, 39-43.	2.1	5

#	Article	IF	CITATIONS
19	Cytoskeleton reorganization/disorganization is a key feature of induced inaccessibility for defence to successive pathogen attacks. Molecular Plant Pathology, 2017, 18, 662-671.	4.2	7
20	Identification of Fungal Species Associated with Branch Dieback of Olive and Resistance of Table Cultivars to <i>Neofusicoccum mediterraneum</i> and <i>Botryosphaeria dothidea</i> Plant Disease, 2017, 101, 306-316.	1.4	52
21	Variability in Susceptibility to Anthracnose in the World Collection of Olive Cultivars of Cordoba (Spain). Frontiers in Plant Science, 2017, 8, 1892.	3.6	32
22	Cultivar and Tree Density As Key Factors in the Long-Term Performance of Super High-Density Olive Orchards. Frontiers in Plant Science, 2016, 7, 1226.	3.6	54
23	Effect of Inoculum Density on <scp>V</scp> erticillium Wilt Incidence in Commercial Olive Orchards. Journal of Phytopathology, 2016, 164, 61-64.	1.0	20
24	Development and validation of an inoculation method to assess the efficacy of biological treatments against Verticillium wilt in olive trees. BioControl, 2016, 61, 283-292.	2.0	20
25	Temperature and water stress during conditioning and incubation phase affecting Orobanche crenata seed germination and radicle growth. Frontiers in Plant Science, 2015, 6, 408.	3.6	11
26	Effect of Temperature, Wetness Duration, and Planting Density on Olive Anthracnose Caused by <i>Colletotrichum</i> spp Phytopathology, 2012, 102, 974-981.	2.2	51
27	Mummified Fruit as a Source of Inoculum and Disease Dynamics of Olive Anthracnose Caused by <i>Colletotrichum</i> spp Phytopathology, 2012, 102, 982-989.	2.2	34
28	Factors Affecting Infection and Disease Development on Olive Leaves Inoculated with <i>Fusicladium oleagineum</i> . Plant Disease, 2011, 95, 1139-1146.	1.4	33
29	Characterization and Pathogenicity of <i> Botryosphaeriaceae < /i > Species Collected from Olive and Other Hosts in Spain and California. Phytopathology, 2010, 100, 1340-1351.</i>	2.2	93
30	Elucidation of the Disease Cycle of Olive Anthracnose Caused by Colletotrichum acutatum. Phytopathology, 2009, 99, 548-556.	2.2	59