List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2947006/publications.pdf Version: 2024-02-01

XINCWELL

#	Article	IF	CITATIONS
1	Rhodium atalyzed Atroposelective Access to Axially Chiral Olefins via Câ^'H Bond Activation and Directing Group Migration. Angewandte Chemie, 2022, 134, .	1.6	15
2	Rhodium atalyzed Atroposelective Access to Axially Chiral Olefins via Câ^'H Bond Activation and Directing Group Migration. Angewandte Chemie - International Edition, 2022, 61, .	7.2	77
3	DUPLICATE: Diastereodivergent [4 + 2] annulation of biphenylenes with enones via nickel(0)-catalyzed C C bond activation. Chinese Chemical Letters, 2022, , .	4.8	0
4	Diastereodivergent [4 + 2] annulation of biphenylenes with enones via nickel(0)-catalyzed C C bond activation. Chinese Chemical Letters, 2022, 33, 5056-5060.	4.8	4
5	Rhodium(III)-Catalyzed Atroposelective Synthesis of C–N Axially Chiral Naphthylamines and Variants via C–H Activation. Organic Letters, 2022, 24, 2531-2535.	2.4	26
6	Palladium-Catalyzed Synthesis of Functionalized Indoles by Acylation/Allylation of 2-Alkynylanilines with Three-Membered Rings. Organic Letters, 2022, 24, 2093-2098.	2.4	33
7	Rhodium-Catalyzed Atroposelective C–H Arylation of (Hetero)Arenes Using Carbene Precursors as Arylating Reagents. Organic Letters, 2022, 24, 3189-3193.	2.4	25
8	Rh(<scp>iii</scp>)-Catalyzed C–C coupling of unactivated C(sp ³)–H bonds with iodonium ylides for accessing all-carbon quaternary centers. Organic Chemistry Frontiers, 2022, 9, 3823-3827.	2.3	6
9	Cobalt-Catalyzed Fluoroallyllation of Carbonyls via C–C Activation of <i>gem</i> -Difluorocyclopropanes. Organic Letters, 2022, 24, 5051-5055.	2.4	24
10	Rhodium atalyzed Atroposelective Construction of Indoles via Câ^'H Bond Activation. Angewandte Chemie - International Edition, 2021, 60, 8391-8395.	7.2	99
11	Rhodium atalyzed Enantioselective Synthesis of βâ€Amino Alcohols via Desymmetrization of <i>gem</i> â€Dimethyl Groups. Angewandte Chemie - International Edition, 2021, 60, 8396-8400.	7.2	35
12	Rhodium atalyzed Atroposelective Construction of Indoles via Câ^'H Bond Activation. Angewandte Chemie, 2021, 133, 8472-8476.	1.6	23
13	Recent advances in transition metal-catalyzed olefinic C–H functionalization. Organic Chemistry Frontiers, 2021, 8, 1085-1101.	2.3	116
14	Rhodium(<scp>iii</scp>)-catalyzed asymmetric [4+1] spiroannulations of <i>O</i> -pivaloyl oximes with α-diazo compounds. Chemical Communications, 2021, 57, 8268-8271.	2.2	21
15	Mechanistic studies on nickel-catalyzed enantioselective [3 + 2] annulation for γ-butenolide synthesis <i>via</i> C–C activation of diarylcyclopropenones. Organic Chemistry Frontiers, 2021, 8, 3023-3031.	2.3	11
16	Rhodium-Catalyzed Redox-Neutral Olefination of Aryldiazenes with Acrylate Esters via C–H Activation and Transfer Hydrogenation. Organic Letters, 2021, 23, 1687-1691.	2.4	9
17	Rhodiumâ€Catalyzed Enantioselective Synthesis of βâ€Amino Alcohols via Desymmetrization of gem â€Dimethyl Groups. Angewandte Chemie, 2021, 133, 8477-8481.	1.6	8
18	Rh(III)-Catalyzed Chemodivergent Coupling of <i>N</i> -Phenoxyacetamides and Alkylidenecyclopropanes via C–H Activation. Organic Letters, 2021, 23, 2927-2932.	2.4	21

#	Article	IF	CITATIONS
19	Rhodium(II)-Catalyzed Regioselective Remote C–H Alkylation of Protic Indoles. ACS Catalysis, 2021, 11, 4929-4935.	5.5	24
20	Rhodium-Catalyzed Regio-, Diastereo-, and Enantioselective Three-Component Carboamination of Dienes via C–H Activation. ACS Catalysis, 2021, 11, 6692-6697.	5.5	37
21	Rhodiumâ€Catalyzed Câ^'H Activationâ€Based Construction of Axially and Centrally Chiral Indenes through Two Discrete Insertions. Angewandte Chemie - International Edition, 2021, 60, 16628-16633.	7.2	68
22	Rhodiumâ€Catalyzed Câ^'H Activationâ€Based Construction of Axially and Centrally Chiral Indenes through Two Discrete Insertions. Angewandte Chemie, 2021, 133, 16764-16769.	1.6	16
23	Rh(<scp>III</scp>)â€Catalyzed Diverse C—H Functionalization of Iminopyridinium Ylides. Chinese Journal of Chemistry, 2021, 39, 2489-2494.	2.6	23
24	Construction of Atropisomeric 3-Arylindoles via Enantioselective Cacchi Reaction. Organic Letters, 2021, 23, 5901-5905.	2.4	37
25	Enantioselective and Diastereoselective C–H Alkylation of Benzamides: Synergized Axial and Central Chirality via a Single Stereodetermining Step. ACS Catalysis, 2021, 11, 9151-9158.	5.5	46
26	Twofold Câ^'H Activationâ€Based Enantio―and Diastereoselective Câ^'H Arylation Using Diarylacetylenes as Rare Arylating Reagents. Angewandte Chemie, 2021, 133, 20587-20592.	1.6	11
27	Twofold Câ^'H Activationâ€Based Enantio―and Diastereoselective Câ^'H Arylation Using Diarylacetylenes as Rare Arylating Reagents. Angewandte Chemie - International Edition, 2021, 60, 20424-20429.	7.2	58
28	Rhodium-Catalyzed and Chiral Zinc Carboxylate-Assisted Allenylation of Benzamides via Kinetic Resolution. Organic Letters, 2021, 23, 7038-7043.	2.4	11
29	Rh(III)-Catalyzed Annulation of 2-Biphenylboronic Acid with Diverse Activated Alkenes. Organic Letters, 2021, 23, 7199-7204.	2.4	16
30	Rh(III)-Catalyzed Efficient Synthesis of Isocoumarins from Cyclohexanediones. Chinese Journal of Organic Chemistry, 2021, 41, 4476.	0.6	4
31	Rh(III)-Catalyzed Coupling of Acrylic Acids and Ynenones via Olefinic C–H Activation and Michael Addition. Organic Letters, 2020, 22, 438-442.	2.4	25
32	Nickel(0)â€Catalyzed Enantioselective [3+2] Annulation of Cyclopropenones and α,βâ€Unsaturated Ketones/Imines. Angewandte Chemie - International Edition, 2020, 59, 2740-2744.	7.2	38
33	Rhodium(III) atalyzed Enantio―and Diastereoselective Câ~'H Cyclopropylation of Nâ€Phenoxylsulfonamides: Combined Experimental and Computational Studies. Angewandte Chemie - International Edition, 2020, 59, 2890-2896.	7.2	80
34	Rhodium(III)â€Catalyzed Enantio―and Diastereoselective Câ^'H Cyclopropylation of Nâ€Phenoxylsulfonamides: Combined Experimental and Computational Studies. Angewandte Chemie, 2020, 132, 2912-2918.	1.6	19
35	Nickel(0) atalyzed Enantioselective [3+2] Annulation of Cyclopropenones and α,βâ€Unsaturated Ketones/Imines. Angewandte Chemie, 2020, 132, 2762-2766.	1.6	3
36	Rh(<scp>iii</scp>)-Catalyzed acylation of heteroarenes with cyclobutenones <i>via</i> C–H/C–C bond activation. Chemical Communications, 2020, 56, 15631-15634.	2.2	12

#	Article	IF	CITATIONS
37	Rhodium(III) atalyzed Asymmetric [4+1] and [5+1] Annulation of Arenes and 1,3â€Enynes: A Distinct Mechanism of Allyl Formation and Allyl Functionalization. Angewandte Chemie, 2020, 132, 22895-22902.	1.6	8
38	Rhodium(III) atalyzed Asymmetric [4+1] and [5+1] Annulation of Arenes and 1,3â€Enynes: A Distinct Mechanism of Allyl Formation and Allyl Functionalization. Angewandte Chemie - International Edition, 2020, 59, 22706-22713.	7.2	40
39	Rhodium-catalyzed coupling of arenes and fluorinated α-diazo diketones: synthesis of chromones. Chemical Communications, 2020, 56, 13169-13172.	2.2	14
40	lodonium Ylides as Carbene Precursors in Rh(III)-Catalyzed C–H Activation. Organic Letters, 2020, 22, 7475-7479.	2.4	72
41	Rhodium(<scp>iii</scp>)-catalyzed synthesis of spirocyclic isoindole <i>N</i> -oxides and isobenzofuranones <i>via</i> C–H activation and spiroannulation. Chemical Communications, 2020, 56, 5528-5531.	2.2	34
42	Rhodium(<scp>iii</scp>)-catalyzed diamidation of olefins <i>via</i> amidorhodation and further amidation. Chemical Communications, 2020, 56, 7809-7812.	2.2	11
43	Access to [4,3,1]-Bridged Carbocycles via Rhodium(III)-Catalyzed C–H Activation of 2-Arylindoles and Annulation with Quinone Monoacetals. Journal of Organic Chemistry, 2020, 85, 4543-4552.	1.7	18
44	Rhodium(III)â€Catalyzed Asymmetric Access to Spirocycles through Câ^'H Activation and Axialâ€toâ€Central Chirality Transfer. Angewandte Chemie, 2020, 132, 7255-7259.	1.6	22
45	Rhodium(III)â€Catalyzed Atroposelective Synthesis of Biaryls by Câ d Activation and Intermolecular Coupling with Sterically Hindered Alkynes. Angewandte Chemie, 2020, 132, 13390-13396.	1.6	32
46	Rhodium(III)â€Catalyzed Atroposelective Synthesis of Biaryls by Câ^'H Activation and Intermolecular Coupling with Sterically Hindered Alkynes. Angewandte Chemie - International Edition, 2020, 59, 13288-13294.	7.2	98
47	Rhodium(III)â€Catalyzed Asymmetric Access to Spirocycles through Câ^H Activation and Axialâ€ŧoâ€Central Chirality Transfer. Angewandte Chemie - International Edition, 2020, 59, 7188-7192.	7.2	86
48	Rhodium(III)-catalyzed chelation-assisted C-H imidation of arenes via umpolung of the imidating reagent. Chinese Journal of Catalysis, 2020, 41, 1723-1733.	6.9	6
49	Mn(<scp>i</scp>)-Catalyzed nucleophilic addition/ring expansion <i>via</i> C–H activation and C–C cleavage. Chemical Communications, 2019, 55, 10764-10767.	2.2	15
50	Rhodium atalyzed Enantioselective Oxidative [3+2] Annulation of Arenes and Azabicyclic Olefins through Twofold Câ^'H Activation. Angewandte Chemie, 2019, 131, 17830-17834.	1.6	31
51	Rhodium atalyzed Enantioselective Oxidative [3+2] Annulation of Arenes and Azabicyclic Olefins through Twofold Câ^'H Activation. Angewandte Chemie - International Edition, 2019, 58, 17666-17670.	7.2	85
52	Rhodium(III)-Catalyzed Chemo-divergent Couplings of Sulfoxonium Ylides with Oxa/azabicyclic Olefins. Organic Letters, 2019, 21, 8459-8463.	2.4	51
53	Cobalt(<scp>iii</scp>)-catalyzed C–H amidation of weakly coordinating sulfoxonium ylides and α-benzoylketene dithioacetals. Organic Chemistry Frontiers, 2019, 6, 741-745.	2.3	41
54	Access to 2-naphthols <i>via</i> Ru(<scp>ii</scp>)-catalyzed C–H annulation of nitrones with α-diazo sulfonyl ketones. Chemical Communications, 2019, 55, 7339-7342.	2.2	18

#	Article	IF	CITATIONS
55	Rhodium(III)-Catalyzed Oxidative Allylic C–H Indolylation via Nucleophilic Cyclization. Organic Letters, 2019, 21, 4662-4666.	2.4	22
56	Rh(III)-Catalyzed Asymmetric Synthesis of Axially Chiral Biindolyls by Merging C–H Activation and Nucleophilic Cyclization. Journal of the American Chemical Society, 2019, 141, 9527-9532.	6.6	234
57	Cobalt(III)/Rhodium(III)â€Catalyzed Regio―and Stereoselective Allylation of 8â€Methylquinoline via <i>sp</i> ³ Câ^'H Activation. Advanced Synthesis and Catalysis, 2019, 361, 3880-3885.	2.1	19
58	Manganese(I)-Catalyzed Synthesis of Fused Eight- and Four-Membered Carbocycles via C–H Activation and Pericyclic Reactions. Organic Letters, 2019, 21, 3402-3406.	2.4	24
59	Rhodium(<scp>iii</scp>)-catalyzed chemoselective C–H functionalization of benzamides with methyleneoxetanones controlled by the solvent. Organic and Biomolecular Chemistry, 2019, 17, 6114-6118.	1.5	20
60	Chemodivergent Oxidative Annulation of Benzamides and Enynes via 1,4-Rhodium Migration. Organic Letters, 2019, 21, 1789-1793.	2.4	35
61	Mnâ€Catalyzed Dehydrocyanative Transannulation of Heteroarenes and Propargyl Carbonates through Câr'H Activation: Beyond the Permanent Directing Effects of Pyridines/Pyrimidines. Angewandte Chemie, 2019, 131, 5144-5148.	1.6	9
62	Rhodium(<scp>iii</scp>)-catalyzed diverse [4 + 1] annulation of arenes with 1,3-enynes <i>via</i> sp ³ /sp ² C–H activation and 1,4-rhodium migration. Chemical Science, 2019, 10, 3987-3993.	3.7	43
63	Mnâ€Catalyzed Dehydrocyanative Transannulation of Heteroarenes and Propargyl Carbonates through Câ~'H Activation: Beyond the Permanent Directing Effects of Pyridines/Pyrimidines. Angewandte Chemie - International Edition, 2019, 58, 5090-5094.	7.2	45
64	Rhodium(III) atalyzed Enantioselective Coupling of Indoles and 7â€Azabenzonorbornadienes by Câ^'H Activation/Desymmetrization. Angewandte Chemie - International Edition, 2019, 58, 322-326.	7.2	82
65	Rhodium(III)â€Catalyzed Enantioselective Coupling of Indoles and 7â€Azabenzonorbornadienes by Câ^'H Activation/Desymmetrization. Angewandte Chemie, 2019, 131, 328-332.	1.6	31
66	Redox-Neutral Access to Isoquinolinones via Rhodium(III)-Catalyzed Annulations of <i>O</i> -Pivaloyl Oximes with Ketenes. Organic Letters, 2018, 20, 2698-2701.	2.4	27
67	Redoxâ€Divergent Synthesis of Fluoroalkylated Pyridines and 2â€Pyridones through Cuâ€Catalyzed Nâ^'O Cleavage of Oxime Acetates. Angewandte Chemie, 2018, 130, 6743-6747.	1.6	16
68	Divergent Coupling of Anilines and Enones by Integration of Câ^'H Activation and Transfer Hydrogenation. Angewandte Chemie - International Edition, 2018, 57, 6681-6685.	7.2	24
69	Rh(III)-Catalyzed Mild Coupling of Nitrones and Azomethine Imines with Alkylidenecyclopropanes via C–H Activation: Facile Access to Bridged Cycles. ACS Catalysis, 2018, 8, 4194-4200.	5.5	88
70	Gold(<scp>i</scp>)- and rhodium(<scp>iii</scp>)-catalyzed formal regiodivergent C–H alkynylation of 1-arylpyrazolones. Organic and Biomolecular Chemistry, 2018, 16, 2860-2864.	1.5	24
71	Redoxâ€Divergent Synthesis of Fluoroalkylated Pyridines and 2â€Pyridones through Cuâ€Catalyzed Nâ^'O Cleavage of Oxime Acetates. Angewandte Chemie - International Edition, 2018, 57, 6633-6637.	7.2	73
72	Cp*Co(iii)-catalyzed amidation of olefinic and aryl C–H bonds: highly selective synthesis of enamides and pyrimidones. Chemical Communications, 2018, 54, 4345-4348.	2.2	42

#	Article	IF	CITATIONS
73	Rh(III)-Catalyzed Acceptorless Dehydrogenative Coupling of (Hetero)arenes with 2-Carboxyl Allylic Alcohols. Organic Letters, 2018, 20, 740-743.	2.4	44
74	Rhodium(<scp>iii</scp>)-catalyzed annulative coupling between arenes and sulfoxonium ylides <i>via</i> C–H activation. Organic Chemistry Frontiers, 2018, 5, 998-1002.	2.3	145
75	Regio- and Diastereoselective Access to Fused Isoxazolidines via Ru(II)-Catalyzed C–H Activation of Nitrones and Coupling with Perfluoroalkylolefins. Organic Letters, 2018, 20, 437-440.	2.4	39
76	Rhodium(<scp>iii</scp>)-catalyzed chemodivergent annulations between <i>N</i> -methoxybenzamides and sulfoxonium ylides <i>via</i> C–H activation. Chemical Communications, 2018, 54, 670-673.	2.2	186
77	Divergent Coupling of Anilines and Enones by Integration of Câ^'H Activation and Transfer Hydrogenation. Angewandte Chemie, 2018, 130, 6791-6795.	1.6	3
78	Construction of (Dihydro)naphtho[1,8- <i>bc</i>]pyrans via Rh(III)-Catalyzed Twofold C–H Activation of Benzoylacetonitriles. Organic Letters, 2018, 20, 2160-2163.	2.4	94
79	Selective oxidation of C–H bonds with Fe-N-C single-atom catalyst. Chinese Journal of Catalysis, 2018, 39, 1-3.	6.9	5
80	Access to Quaternary Stereogenic Centers via Rhodium(III)-Catalyzed Annulations between 2-Phenylindoles and Ketenes. Organic Letters, 2018, 20, 1957-1960.	2.4	24
81	Facile construction of hydrogenated azepino[3,2,1- <i>hi</i>]indoles by Rh(<scp>iii</scp>)-catalyzed C–H activation/[5 + 2] annulation of <i>N</i> -cyanoacetylindolines with sulfoxonium ylides. Organic Chemistry Frontiers, 2018, 5, 3263-3266.	2.3	48
82	Rh(<scp>iii</scp>)-Catalyzed α-fluoroalkenylation of <i>N</i> -nitrosoanilines with 2,2-difluorovinyl tosylates <i>via</i> C–H bond activation. Organic Chemistry Frontiers, 2018, 5, 3406-3409.	2.3	35
83	Ag(I)-Catalyzed Nucleophilic Addition and Friedel–Crafts Alkylation between α-Oxoketene Dithioacetals and Propargyl Carbonates. Organic Letters, 2018, 20, 7775-7778.	2.4	13
84	Chemo-selective couplings of anilines and acroleins/enones under substrate control and condition control. Chinese Journal of Catalysis, 2018, 39, 1782-1791.	6.9	5
85	Enantiodivergent Desymmetrization in the Rhodium(III) atalyzed Annulation of Sulfoximines with Diazo Compounds. Angewandte Chemie, 2018, 130, 15760-15764.	1.6	41
86	Enantiodivergent Desymmetrization in the Rhodium(III) atalyzed Annulation of Sulfoximines with Diazo Compounds. Angewandte Chemie - International Edition, 2018, 57, 15534-15538.	7.2	132
87	Enantioselective Copper-Catalyzed Hydroamination of Vinylarenes with Anthranils. Organic Letters, 2018, 20, 7154-7157.	2.4	54
88	Co(III)/Zn(II)-catalyzed dearomatization of indoles and coupling with carbenes from ene-yne ketones via intramolecular cyclopropanation. Chinese Journal of Catalysis, 2018, 39, 1881-1889.	6.9	3
89	Divergent Annulative C–C Coupling of Indoles Initiated by Manganese-Catalyzed C–H Activation. ACS Catalysis, 2018, 8, 9463-9470.	5.5	52
90	Rhodium(III)-Catalyzed Redox-Neutral Synthesis of Isoquinolinium Salts via C–H Activation of Imines. Journal of Organic Chemistry, 2018, 83, 6477-6488.	1.7	18

#	Article	IF	CITATIONS
91	Rhodium(III) atalyzed Synthesis of Cinnolinium Salts from Azobenzenes and Diazo Compounds. Advanced Synthesis and Catalysis, 2018, 360, 2836-2842.	2.1	29
92	Rh(III)-Catalyzed C–C Coupling of Diverse Arenes and 4-Acyl-1-sulfonyltriazoles via C–H Activation. Organic Letters, 2018, 20, 4946-4949.	2.4	32
93	Ruthenium- and Rhodium-Catalyzed Chemodivergent Couplings of Ketene Dithioacetals and α-Diazo Ketones via C–H Activation/Functionalization. Organic Letters, 2018, 20, 4597-4600.	2.4	32
94	Ruthenium(<scp>ii</scp>)-catalyzed α-fluoroalkenylation of arenes <i>via</i> C–H bond activation and C–F bond cleavage. Organic Chemistry Frontiers, 2018, 5, 1978-1982.	2.3	28
95	2 <i>H</i> -Chromene-3-carboxylic Acid Synthesis via Solvent-Controlled and Rhodium(III)-Catalyzed Redox-Neutral C–H Activation/[3 + 3] Annulation Cascade. Organic Letters, 2018, 20, 3892-3896.	2.4	37
96	Front Cover Picture: Synthesis of 2â€Substituted Quinolines <i>via</i> Rhodium(III)â€Catalyzed C–H Activation of Imidamides and Coupling with Cyclopropanols (Adv. Synth. Catal. 10/2017). Advanced Synthesis and Catalysis, 2017, 359, 1599-1599.	2.1	2
97	Synthesis of 2â€Substituted Quinolines <i>via</i> Rhodium(III)â€Catalyzed C–H Activation of Imidamides and Coupling with Cyclopropanols. Advanced Synthesis and Catalysis, 2017, 359, 1620-1625.	2.1	59
98	Experimental and Theoretical Studies on Rhodium-Catalyzed Coupling of Benzamides with 2,2-Difluorovinyl Tosylate: Diverse Synthesis of Fluorinated Heterocycles. Journal of the American Chemical Society, 2017, 139, 3537-3545.	6.6	229
99	Catalyst ontrolled Regiodivergent Alkyne Insertion in the Context of Câ^'H Activation and Diels–Alder Reactions: Synthesis of Fused and Bridged Cycles. Angewandte Chemie - International Edition, 2017, 56, 8163-8167.	7.2	108
100	Rhodium(III)-Catalyzed Acylation of C(sp ³)–H Bonds with Cyclopropenones. Organic Letters, 2017, 19, 3644-3647.	2.4	61
101	Catalystâ€Controlled Regiodivergent Alkyne Insertion in the Context of Câ^'H Activation and Diels–Alder Reactions: Synthesis of Fused and Bridged Cycles. Angewandte Chemie, 2017, 129, 8275-8279.	1.6	26
102	Iridium(III)-Catalyzed Synthesis of Benzimidazoles via C–H Activation and Amidation of Aniline Derivatives. Organic Letters, 2017, 19, 3243-3246.	2.4	69
103	Divergent Access to 1-Naphthols and Isocoumarins via Rh(III)-Catalyzed C–H Activation Assisted by Phosphonium Ylide. Organic Letters, 2017, 19, 3410-3413.	2.4	77
104	Cp*Rh(III)-Catalyzed Mild Addition of C(sp ³)–H Bonds to α,β-Unsaturated Aldehydes and Ketones. Organic Letters, 2017, 19, 2086-2089.	2.4	59
105	Cobalt(III)- and Rhodium(III)-Catalyzed C–H Amidation and Synthesis of 4-Quinolones: C–H Activation Assisted by Weakly Coordinating and Functionalizable Enaminone. Organic Letters, 2017, 19, 1812-1815.	2.4	110
106	Access to Substituted Propenoic Acids via Rh(III)-Catalyzed C–H Allylation of (Hetero)Arenes with Methyleneoxetanones. Organic Letters, 2017, 19, 5972-5975.	2.4	43
107	Rhodiumâ€Catalyzed Amination and Annulation of Arenes with Anthranils: Câ€H Activation Assisted by Weakly Coordinating Amides. Advanced Synthesis and Catalysis, 2017, 359, 4411-4416.	2.1	38
108	Rh(III)-Catalyzed Diastereodivergent Spiroannulation of Cyclic Imines with Activated Alkenes. Organic Letters, 2017, 19, 5402-5405.	2.4	68

#	Article	IF	CITATIONS
109	Rhodium(<scp>iii</scp>)-catalyzed regio- and stereoselective benzylic α-fluoroalkenylation with gem-difluorostyrenes. Chemical Communications, 2017, 53, 10326-10329.	2.2	75
110	Cp*Co ^{III} -Catalyzed Branch-Selective Hydroarylation of Alkynes via C–H Activation: Efficient Access to <i>α-gem</i> -Vinylindoles. ACS Catalysis, 2017, 7, 7296-7304.	5.5	94
111	Sulfoxonium Ylides as a Carbene Precursor in Rh(III)-Catalyzed C–H Acylmethylation of Arenes. Organic Letters, 2017, 19, 5256-5259.	2.4	178
112	Rhodium(<scp>iii</scp>)-catalyzed synthesis of indanones via C–H activation of phenacyl phosphoniums and coupling with olefins. Organic Chemistry Frontiers, 2017, 4, 2114-2118.	2.3	20
113	Rhodium(III)-Catalyzed Synthesis of Naphthols via C–H Activation of Sulfoxonium Ylides. Organic Letters, 2017, 19, 4307-4310.	2.4	138
114	Rhodium(III)-catalyzed selective access to isoindolinones via formal [4 + 1] annulation of arylamides and propargyl alcohols. Chinese Journal of Catalysis, 2017, 38, 1390-1398.	6.9	24
115	Rhodium(III)-Catalyzed C–H Activation of Nitrones and Annulative Coupling with Nitroalkenes. Journal of Organic Chemistry, 2017, 82, 9877-9884.	1.7	32
116	Naphthol synthesis: annulation of nitrones with alkynes via rhodium(<scp>iii</scp>)-catalyzed C–H activation. Chemical Communications, 2017, 53, 9640-9643.	2.2	32
117	Rhodium-Catalyzed Site-Selective Coupling of Indoles with Diazo Esters: C4-Alkylation versus C2-Annulation. Organic Letters, 2017, 19, 6184-6187.	2.4	77
118	Copper-catalyzed amination of phenylboronic acids with benzofurazan 1-oxides. Chinese Journal of Catalysis, 2017, 38, 1842-1850.	6.9	0
119	Iridium―and Rhodiumâ€Catalyzed Carbocyclization between 2â€Phenylimidazo[1,2â€ <i>a</i>]pyridine and αâ€Điazo Esters. Advanced Synthesis and Catalysis, 2016, 358, 880-886.	2.1	55
120	Cobalt(III)-Catalyzed C–C Coupling of Arenes with 7-Oxabenzonorbornadiene and 2-Vinyloxirane via C–H Activation. Organic Letters, 2016, 18, 3802-3805.	2.4	111
121	Rhodiumâ€Catalyzed CS and CN Functionalization of Arenes: Combination of CH Activation and Hypervalent lodine Chemistry. Chemistry - A European Journal, 2016, 22, 511-516.	1.7	54
122	Anthranil: An Aminating Reagent Leading to Bifunctionality for Both C(sp ³)â^'H and C(sp ²)â^'H under Rhodium(III) Catalysis. Angewandte Chemie, 2016, 128, 8838-8842.	1.6	41
123	Cobalt(III)-Catalyzed Regio- and Stereoselective α-Fluoroalkenylation of Arenes with <i>gem</i> -Difluorostyrenes. Organic Letters, 2016, 18, 6320-6323.	2.4	133
124	Nitrone Directing Groups in Rhodium(III)â€Catalyzed Câ^'H Activation of Arenes: 1,3â€Dipoles versus Traceless Directing Groups. Angewandte Chemie, 2016, 128, 15577-15581.	1.6	23
125	Iridium- and rhodium-catalyzed C–H activation and formyl arylation of benzaldehydes under chelation-assistance. Organic and Biomolecular Chemistry, 2016, 14, 5233-5237.	1.5	23
126	Synthesis of 1 <i>H</i> -Indazoles from Imidates and Nitrosobenzenes via Synergistic Rhodium/Copper Catalysis. Organic Letters, 2016, 18, 2102-2105.	2.4	70

#	Article	IF	CITATIONS
127	Rhodium(III)-Catalyzed Mild Alkylation of (Hetero)Arenes with Cyclopropanols via C–H Activation and Ring Opening. Journal of Organic Chemistry, 2016, 81, 4869-4875.	1.7	80
128	Mild Acylation of C(sp ³)–H and C(sp ²)–H Bonds under Redox-Neutral Rh(III) Catalysis. ACS Catalysis, 2016, 6, 7744-7748.	5.5	57
129	Transition metal-catalysed couplings between arenes and strained or reactive rings: combination of C–H activation and ring scission. Chemical Society Reviews, 2016, 45, 6462-6477.	18.7	305
130	Rhodium/copper-cocatalyzed annulation of benzylamines with diazo compounds: access to fused isoquinolines. Organic Chemistry Frontiers, 2016, 3, 1159-1162.	2.3	26
131	Cobalt-catalyzed redox-neutral synthesis of isoquinolines: C–H activation assisted by an oxidizing N–S bond. Chinese Journal of Catalysis, 2016, 37, 1423-1430.	6.9	33
132	Synthesis of Cyclopentadienols by Rhodium-Catalyzed C–H Activation of 8-Formylquinolines and [2+2+1] Carbocyclization with Alkynes. ACS Catalysis, 2016, 6, 6372-6376.	5.5	25
133	Ruthenium(II)â€Catalyzed Câ^'H Activation of Imidamides and Divergent Couplings with Diazo Compounds: Substrateâ€Controlled Synthesis of Indoles and 3 <i>H</i> â€ndoles. Angewandte Chemie - International Edition, 2016, 55, 11877-11881.	7.2	126
134	Rhodium(III)-Catalyzed Regio- and Stereoselective C–H Allylation of Arenes with Vinyl Benzoxazinanones. Organic Letters, 2016, 18, 4392-4395.	2.4	47
135	Ruthenium(II) atalyzed Câ^'H Activation of Imidamides and Divergent Couplings with Diazo Compounds: Substrate ontrolled Synthesis of Indoles and 3 <i>H</i> â€Indoles. Angewandte Chemie, 2016, 128, 12056-12060.	1.6	27
136	Cooperative Co(III)/Cu(II)-Catalyzed C–N/N–N Coupling of Imidates with Anthranils: Access to 1 <i>H</i> -Indazoles via C–H Activation. Organic Letters, 2016, 18, 3662-3665.	2.4	123
137	Nitrone Directing Groups in Rhodium(III) atalyzed Câ^'H Activation of Arenes: 1,3â€Dipoles versus Traceless Directing Groups. Angewandte Chemie - International Edition, 2016, 55, 15351-15355.	7.2	119
138	Rh(III)- and Zn(II)-Catalyzed Synthesis of Quinazoline <i>N</i> -Oxides via C–H Amidation–Cyclization of Oximes. Organic Letters, 2016, 18, 6144-6147.	2.4	79
139	Rhodium-Catalyzed Oxidative Synthesis of Quinoline-Fused Sydnones via 2-fold C–H Bond Activation. Journal of Organic Chemistry, 2016, 81, 12038-12045.	1.7	39
140	Rh(III)-Catalyzed C–C/C–N Coupling of Imidates with α-Diazo Imidamide: Synthesis of Isoquinoline-Fused Indoles. Organic Letters, 2016, 18, 2914-2917.	2.4	84
141	Access to Structurally Diverse Quinoline-Fused Heterocycles via Rhodium(III)-Catalyzed C–C/C–N Coupling of Bifunctional Substrates. Organic Letters, 2016, 18, 2812-2815.	2.4	128
142	Cobalt(iii)-catalyzed efficient synthesis of indenones through carboannulation of benzoates and alkynes. Organic Chemistry Frontiers, 2016, 3, 813-816.	2.3	69
143	Anthranil: An Aminating Reagent Leading to Bifunctionality for Both C(sp ³)â^'H and C(sp ²)â^'H under Rhodium(III) Catalysis. Angewandte Chemie - International Edition, 2016, 55, 8696-8700.	7.2	193
144	Redox-Neutral Couplings between Amides and Alkynes via Cobalt(III)-Catalyzed C–H Activation. Organic Letters, 2016, 18, 588-591.	2.4	145

#	Article	IF	CITATIONS
145	Rh(III)-Catalyzed Synthesis of <i>N</i> -Unprotected Indoles from Imidamides and Diazo Ketoesters via C–H Activation and C–C/C–N Bond Cleavage. Organic Letters, 2016, 18, 700-703.	2.4	122
146	Iridium(<scp>iii</scp>)- and rhodium(<scp>iii</scp>)-catalyzed coupling of anilines with α-diazoesters via chelation-assisted C–H activation. Organic Chemistry Frontiers, 2016, 3, 87-90.	2.3	64
147	Rhodium(III)-Catalyzed Annulation between <i>N</i> -Sulfinyl Ketoimines and Activated Olefins: C–H Activation Assisted by an Oxidizing N–S Bond. ACS Catalysis, 2016, 6, 1971-1980.	5.5	73
148	Co(III)-Catalyzed Synthesis of Quinazolines via C–H Activation of <i>N</i> -Sulfinylimines and Benzimidates. Organic Letters, 2016, 18, 1306-1309.	2.4	171
149	Formal Gold- and Rhodium-Catalyzed Regiodivergent C–H Alkynylation of 2-Pyridones. Journal of Organic Chemistry, 2016, 81, 715-722.	1.7	94
150	Rhodium(III)-Catalyzed Coupling of Arenes with Cyclopropanols via C–H Activation and Ring Opening. ACS Catalysis, 2016, 6, 647-651.	5.5	137
151	The Mechanism of NO Bond Cleavage in Rhodiumâ€Catalyzed CH Bond Functionalization of Quinoline <i>N</i> à€oxides with Alkynes: A Computational Study. Chemistry - A European Journal, 2015, 21, 10131-10137.	1.7	59
152	Rhodium(III) atalyzed Amidation of Unactivated C(sp ³)H Bonds. Angewandte Chemie - International Edition, 2015, 54, 13049-13052.	7.2	214
153	Lewis Acidâ€Catalyzed Electrophilic Trifluoromethylthiolation of (Hetero)Arenes. Advanced Synthesis and Catalysis, 2015, 357, 355-360.	2.1	98
154	Iridium- and Rhodium-Catalyzed C–H Activation and Formyl Alkynylation of Benzaldehydes under Chelation-Assistance. Organic Letters, 2015, 17, 920-923.	2.4	95
155	Rh(III)-catalyzed C–H activation of benzamides: Coupling with quinones. Chinese Journal of Catalysis, 2015, 36, 48-56.	6.9	17
156	Rhodium-Catalyzed C–H Activation of Phenacyl Ammonium Salts Assisted by an Oxidizing C–N Bond: A Combination of Experimental and Theoretical Studies. Journal of the American Chemical Society, 2015, 137, 1623-1631.	6.6	314
157	Rh(III)-catalyzed coupling of nitrones with alkynes for the synthesis of indolines. Chinese Journal of Catalysis, 2015, 36, 925-932.	6.9	27
158	Rh(III)-Catalyzed Trifluoromethylthiolation of Indoles via C–H Activation. Journal of Organic Chemistry, 2015, 80, 8361-8366.	1.7	70
159	Rhodium(III)-catalyzed [3+2] annulative coupling between oximes and electron-deficient alkynes. Science China Chemistry, 2015, 58, 1297-1301.	4.2	24
160	Theoretical Investigations on Rh(III)-Catalyzed Cross-Dehydrogenative Aryl–Aryl Coupling via C–H Bond Activation. Journal of Physical Chemistry A, 2015, 119, 2989-2997.	1.1	13
161	Mechanistic studies on C–C reductive coupling of five-coordinate Rh(<scp>iii</scp>) complexes. Organic Chemistry Frontiers, 2015, 2, 783-791.	2.3	7
162	Rh(III)-Catalyzed C–H Alkylation of Arenes Using Alkylboron Reagents. Organic Letters, 2015, 17, 2812-2815.	2.4	107

#	Article	IF	CITATIONS
163	Diaryliodoniums by Rhodium(III) atalyzed CH Activation: Mild Synthesis and Diversified Functionalizations. Angewandte Chemie - International Edition, 2015, 54, 7405-7409.	7.2	57
164	Rh(III)-Catalyzed Oxidative Annulation of 2-Phenylimidazo[1,2- <i>a</i>]pyridines with Alkynes: Mono versus Double C–H Activation. Journal of Organic Chemistry, 2015, 80, 3471-3479.	1.7	117
165	Substrate Activation Strategies in Rhodium(III)-Catalyzed Selective Functionalization of Arenes. Accounts of Chemical Research, 2015, 48, 1007-1020.	7.6	915
166	Mild and Efficient Ir(III)-Catalyzed Direct C–H Alkynylation of N-Phenoxyacetamides with Terminal Alkyne. ACS Catalysis, 2015, 5, 6999-7003.	5.5	75
167	Rhodium(iii)-catalyzed annulation of arenes with alkynes assisted by an internal oxidizing N–O bond. Organic and Biomolecular Chemistry, 2015, 13, 10977-10980.	1.5	14
168	Rh(III)-Catalyzed Selenylation of Arenes with Selenenyl Chlorides/Diselenides via C–H Activation. Organic Letters, 2015, 17, 58-61.	2.4	115
169	Direct Access to Isoindolinone Derivatives by Palladium-Catalyzed C–H Activation and Isocyanide Insertion by Using Molecular Oxygen as the Sole Oxidant. Synthesis, 2014, 46, 2045-2050.	1.2	10
170	Rh(III)-catalyzed synthesis of (dihydro)quinolines via the annulation of N-sulfonyl 2-aminobenzaldehydes with olefins. Chinese Journal of Catalysis, 2014, 35, 1840-1845.	6.9	6
171	Rhodium(<scp>iii</scp>)-catalyzed C–H alkynylation of azomethine ylides under mild conditions. Organic and Biomolecular Chemistry, 2014, 12, 9329-9332.	1.5	44
172	Rh ^{III} â€Catalyzed Hydroacylation Reactions between <i>N</i> â€Sulfonyl 2â€Aminobenzaldehydes and Olefins. Chemistry - A European Journal, 2014, 20, 3283-3287.	1.7	66
173	Switching of the triplet excited state of rhodamine-C60 dyads. Chemical Communications, 2014, 50, 15627-15630.	2.2	19
174	Rhodium-catalyzed tandem aldol condensation–Robinson annulation between aldehydes and acetone: synthesis of 3-methylcyclohexenones. Tetrahedron Letters, 2014, 55, 6399-6402.	0.7	5
175	Rh(III)-catalyzed oxidative amidation of aldehydes: An efficient route to N-pyridinamides and imides. Chinese Journal of Catalysis, 2014, 35, 1012-1016.	6.9	7
176	Rhodium(III) atalyzed CC and CO Coupling of Quinoline <i>N</i> â€Oxides with Alkynes: Combination of CH Activation with Oâ€Atom Transfer. Angewandte Chemie - International Edition, 2014, 53, 10794-10798.	7.2	200
177	Rhodium(<scp>iii</scp>)-catalyzed coupling of N-sulfonyl 2-aminobenzaldehydes with oxygenated allylic olefins through C–H activation. Organic and Biomolecular Chemistry, 2014, 12, 4290-4294.	1.5	31
178	Rh(<scp>iii</scp>)-Catalyzed synthesis of sultones through C–H activation directed by a sulfonic acid group. Chemical Communications, 2014, 50, 9776.	2.2	41
179	Rhodium(III)-Catalyzed C–C Coupling of Arenes with 2-Vinyloxiranes: Synthesis of Allylic Alcohols. Organic Letters, 2014, 16, 1200-1203.	2.4	123
180	Mild Synthesis of Chalcones via Rhodium(III)-Catalyzed C–C Coupling of Arenes and Cyclopropenones. Organic Letters, 2014, 16, 1220-1223.	2.4	91

#	Article	IF	CITATIONS
181	Rh(III)- and Ir(III)-Catalyzed C–H Alkynylation of Arenes under Chelation Assistance. Journal of the American Chemical Society, 2014, 136, 4780-4787.	6.6	389
182	Rhodium(III)-Catalyzed Redox-Neutral C–H Arylation via Rearomatization. Organic Letters, 2014, 16, 1586-1589.	2.4	51
183	Silver(I)-Catalyzed Addition-Cyclization of Alkyne-Functionalized Azomethines. Organic Letters, 2013, 15, 874-877.	2.4	28
184	Rhodium(III) atalyzed Coupling of Arenes with 7â€Oxa/Azabenzonorbornadienes by CH Activation. Angewandte Chemie - International Edition, 2013, 52, 8995-9000.	7.2	140
185	Ru(II)-catalyzed ring expansion of alkynylcyclopropanes in the presence of sulfonamides. Chinese Journal of Catalysis, 2013, 34, 1816-1819.	6.9	3
186	Access to Indenones by Rhodium(III)-Catalyzed C–H Annulation of Arylnitrones with Internal Alkynes. Organic Letters, 2013, 15, 5440-5443.	2.4	137
187	Rh(III)-Catalyzed Coupling of Benzamides with Propargyl Alcohols via Hydroarylation–Lactonization. Organic Letters, 2013, 15, 6290-6293.	2.4	71
188	Rh(III)-Catalyzed Olefination of <i>N</i> -Sulfonyl Imines: Synthesis of <i>Ortho</i> -Olefinated Benzaldehydes. Organic Letters, 2013, 15, 6294-6297.	2.4	58
189	Rhodium(III) atalyzed Azidation and Nitration of Arenes by CH Activation. Angewandte Chemie - International Edition, 2013, 52, 11862-11866.	7.2	176
190	Rh(III)-catalyzed oxidative synthesis of pyrazoles from azomethines and acrylamides. Chinese Journal of Catalysis, 2013, 34, 679-683.	6.9	7
191	Rhodium(III) atalyzed CC Coupling between Arenes and Aziridines by CH Activation. Angewandte Chemie - International Edition, 2013, 52, 2577-2580.	7.2	142
192	Rhodium(iii)-catalyzed oxidative olefination of N-allyl sulfonamides. Organic and Biomolecular Chemistry, 2013, 11, 2761.	1.5	30
193	Base-Catalyzed Cyclization of <i>N</i> -Sulfonyl Propargylamides to Sulfonylmethyl-Substituted Oxazoles via Sulfonyl Migration. Journal of Organic Chemistry, 2013, 78, 4895-4904.	1.7	68
194	Rhodium(III) atalyzed Annulation of Azomethine Ylides with Alkynes <i>via</i> CH Activation. Advanced Synthesis and Catalysis, 2013, 355, 353-359.	2.1	52
195	Rhodium(III)-Catalyzed C–H Activation and Amidation of Arenes Using <i>N</i> -Arenesulfonated Imides as Amidating Reagents. Organic Letters, 2013, 15, 3706-3709.	2.4	122
196	Rhodium(III)-Catalyzed Azacycle-Directed Intermolecular Insertion of Arene C–H Bonds into α-Diazocarbonyl Compounds. Journal of Organic Chemistry, 2013, 78, 5444-5452.	1.7	159
197	Rhodium(III)-Catalyzed Oxidative Olefination of N-(Naphthalen-1-yl)amides. Synlett, 2012, 23, 1649-1652.	1.0	9
198	Ruthenium- and Sulfonamide-Catalyzed Cyclization between <i>N</i> -Sulfonyl Imines and Alkynes. Organic Letters, 2012, 14, 5506-5509.	2.4	123

#	Article	IF	CITATIONS
199	Rhodium(III)- and Ruthenium(II)-Catalyzed Olefination of Isoquinolones. Organic Letters, 2012, 14, 4166-4169.	2.4	102
200	Palladium-catalyzed desulfitative arylation of azoles with arylsulfonyl hydrazides. Organic and Biomolecular Chemistry, 2012, 10, 7479.	1.5	105
201	Diverse Reactivity in a Rhodium(III)â€Catalyzed Oxidative Coupling of <i>N</i> â€Allyl Arenesulfonamides with Alkynes. Angewandte Chemie - International Edition, 2012, 51, 12348-12352.	7.2	95
202	Rhodium(iii)-catalyzed oxidative mono- and di-olefination of isonicotinamides. Organic and Biomolecular Chemistry, 2012, 10, 5521.	1.5	48
203	Palladium-Catalyzed Cascade Cyclization–Oxidative Olefination of <i>tert</i> -Butyl 2-Alkynylbenozates. Journal of Organic Chemistry, 2012, 77, 1579-1584.	1.7	67
204	Rhodium(III) atalyzed Oxidative CH Functionalization of Azomethine Ylides. Angewandte Chemie - International Edition, 2012, 51, 11819-11823.	7.2	132
205	Cross-Dehydrogenative Coupling between Enamino Esters and Ketones: Synthesis of Tetrasubstituted Pyrroles. Organic Letters, 2012, 14, 1412-1415.	2.4	72
206	Palladium-catalyzed selective oxidative olefination and arylation of 2-pyridones. Chemical Science, 2012, 3, 3231.	3.7	108
207	C–C, C–O and C–N bond formation via rhodium(iii)-catalyzed oxidative C–H activation. Chemical Society Reviews, 2012, 41, 3651.	18.7	2,151
208	Rhodium(III)-Catalyzed Cyclization–Olefination of <i>N</i> -Acetoxyl Ketoimine-Alkynes. Organic Letters, 2012, 14, 3400-3403.	2.4	53
209	Rhodium(III)-Catalyzed Oxidative Coupling of 5-Aryl-1H-pyrazoles with Alkynes and Acrylates. Journal of Organic Chemistry, 2011, 76, 8530-8536.	1.7	85
210	Gold- and Iodine-Mediated Internal Oxygen Transfer of Nitrone- and Sulfoxide-Functionalized Alkynes. Journal of Organic Chemistry, 2011, 76, 8488-8494.	1.7	59
211	Oxidative Coupling of NH Isoquinolones with Olefins Catalyzed by Rh(III). Journal of Organic Chemistry, 2011, 76, 2926-2932.	1.7	117
212	Palladium-Catalyzed Oxidative Cross-Coupling between Pyridine <i>N</i> -Oxides and Indoles. Organic Letters, 2011, 13, 1766-1769.	2.4	193
213	Synthesis of Quinolines via Rh(III)-Catalyzed Oxidative Annulation of Pyridines. Journal of Organic Chemistry, 2011, 76, 7583-7589.	1.7	156
214	Synthesis of 1-Aminoisoquinolines via Rh(III)-Catalyzed Oxidative Coupling. Organic Letters, 2011, 13, 4636-4639.	2.4	186
215	Synthesis of <i>N</i> -(2-Pyridyl)indoles via Pd(II)-Catalyzed Oxidative Coupling. Journal of Organic Chemistry, 2011, 76, 3523-3526.	1.7	96
216	Rh(III)-Catalyzed Oxidative Olefination of <i>N</i> -(1-Naphthyl)sulfonamides Using Activated and Unactivated Alkenes. Organic Letters, 2011, 13, 5808-5811.	2.4	102

#	Article	IF	CITATIONS
217	Iridium phosphine abnormal N-heterocyclic carbene complexes in catalytic hydrogen transfer reactions. Tetrahedron Letters, 2011, 52, 5596-5600.	0.7	80
218	Synthesis of Isoquinolines <i>via</i> Rhodium(III) atalyzed Dehydrative CC and CN Coupling between Oximines and Alkynes. Advanced Synthesis and Catalysis, 2011, 353, 719-723.	2.1	225
219	Gold αâ€Oxo Carbenoids in Catalysis: Catalytic Oxygenâ€Atom Transfer to Alkynes. Angewandte Chemie - International Edition, 2011, 50, 7226-7236.	7.2	356
220	Isolation of Azomethine Ylides and Their Complexes: Iridium(III)â€Mediated Cyclization of Nitrone Substrates Containing Alkynes. Angewandte Chemie - International Edition, 2011, 50, 7791-7796.	7.2	59
221	Theoretical studies of iridium-mediated tautomerization of substituted pyridines. Journal of Organometallic Chemistry, 2011, 696, 1640-1646.	0.8	11
222	Ruthenium ONOâ€Type Pincer Complex: Synthesis, Structural Characterization, and Catalysis. Advanced Synthesis and Catalysis, 2010, 352, 1779-1783.	2.1	14
223	Anionâ€Exchangeâ€Triggered 1,3â€Shift of an NH Proton to Iridium in Protic Nâ€Heterocyclic Carbenes: Hydrogenâ€Bonding and Ionâ€Pairing Effects. Angewandte Chemie - International Edition, 2010, 49, 912-917.	7.2	48
224	Rh(III)-Catalyzed Oxidative Coupling of <i>N</i> -Aryl-2-aminopyridine with Alkynes and Alkenes. Organic Letters, 2010, 12, 5426-5429.	2.4	228
225	Rh-Catalyzed Oxidative Coupling between Primary and Secondary Benzamides and Alkynes: Synthesis of Polycyclic Amides. Journal of Organic Chemistry, 2010, 75, 7487-7490.	1.7	303
226	Rh(III)-Catalyzed Tandem Oxidative Olefinationâ^'Michael Reactions between Aryl Carboxamides and Alkenes. Organic Letters, 2010, 12, 5430-5433.	2.4	266
227	Synthesis of 2-Pyridones and Iminoesters via Rh(III)-Catalyzed Oxidative Coupling between Acrylamides and Alkynes. Organic Letters, 2010, 12, 5462-5465.	2.4	176
228	Synthesis of Trisubstituted Pyrroles from Rhodiumâ€Catalyzed Alkyne Headâ€toâ€Tail Dimerization and Subsequent Gold―Catalyzed Cyclization. Advanced Synthesis and Catalysis, 2009, 351, 1371-1377.	2.1	71
229	Methyleneimidazoline Complexes of Iridium, Rhodium, and Palladium from Selective C(sp ³)H Bond Activation. Chemistry - A European Journal, 2009, 15, 5535-5544.	1.7	36
230	Chelation-Assisted Carbon-Halogen Bond Activation by a Rhodium(I) Complex. Inorganic Chemistry, 2009, 48, 1198-1206.	1.9	24
231	Stabilization of Imidosamarium(III) Cubane by Amidinates. Inorganic Chemistry, 2009, 48, 6344-6346.	1.9	47
232	1,3-Dinitrone Pincer Complexes of Palladium and Nickel: Synthesis, Structural Characterizations, and Catalysis. Organometallics, 2009, 28, 3233-3238.	1.1	49
233	Chelation-assisted rhodium hydride-catalyzed regioselective H/D exchange in arenes. Tetrahedron Letters, 2008, 49, 6929-6932.	0.7	31
234	Pyridine-Based N-Heterocyclic Carbene Hydride Complexes of Iridium via Câ^'H Activation. Organometallics, 2008, 27, 6193-6201.	1.1	37

#	Article	IF	CITATIONS
235	Iridium Abnormal N-Heterocyclic Carbene Hydrides via Highly Selective Câ^'H Activation. Organometallics, 2008, 27, 1187-1192.	1.1	46
236	Rhodium and Iridium Complexes of Abnormal N-Heterocyclic Carbenes Derived from Imidazo[1,2- <i>a</i>]pyridine. Organometallics, 2008, 27, 1936-1943.	1.1	138
237	Hydrogen bonding-assisted tautomerization of pyridine moieties in the coordination sphere of an Ir(i) complex. Chemical Communications, 2008, , 3558.	2.2	34
238	Synthesis, Structures, and Solution Dynamics of Palladium Complexes of Quinoline-Functionalized N-Heterocyclic Carbenes. Inorganic Chemistry, 2008, 47, 8031-8043.	1.9	51
239	Quinoline-Tethered N-Heterocyclic Carbene Complexes of Rhodium and Iridium: Synthesis, Catalysis, and Electrochemical Properties. Organometallics, 2008, 27, 4484-4493.	1.1	63
240	A Rare η3 Binding Mode of Aryloxides in Iridium, Rhodium, and Ruthenium Complexes. Organometallics, 2008, 27, 6390-6392.	1.1	15
241	lr(III)-Induced C-Bound to N-Bound Tautomerization of a N-Heterocyclic Carbene. Organometallics, 2007, 26, 4684-4687.	1.1	77
242	Intramolecular Alkyne Hydroalkoxylation and Hydroamination Catalyzed by Iridium Hydrides. Organic Letters, 2005, 7, 5437-5440.	2.4	227
243	Electronic and Steric Effects in the Insertion of Alkynes into an Iridium(III) Hydride. Organometallics, 2005, 24, 62-76.	1.1	71
244	Intramolecular Oxygen Transfer from Nitro Groups to Câ«®C Bonds Mediated by Iridium Hydrides. Organometallics, 2005, 24, 3066-3073.	1.1	40
245	Cycloiridation of α,β-Unsaturated Ketones, Esters, and Acetophenone. Organometallics, 2005, 24, 4810-4815.	1.1	46
246	Stoichiometric Câ^'C Coupling Reactions in the Coordination Sphere of an Iridium(III) Alkyl. Organometallics, 2004, 23, 3378-3387.	1.1	45
247	Rhodium and Iridium Complexes of N-Heterocyclic Carbenes via Transmetalation:Â Structure and Dynamics. Organometallics, 2003, 22, 1663-1667.	1.1	539
248	A Rare η2-Butadienyl Complex from an Alkyne Double Insertion with Double Vinylidene Rearrangement. Journal of the American Chemical Society, 2003, 125, 3698-3699.	6.6	33