
Paul J A Withers

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2946955/publications.pdf Version: 2024-02-01

Δλιμ Ι Δ \λ/ιτήγρο

#	Article	IF	CITATIONS
1	Sewage-effluent phosphorus: A greater risk to river eutrophication than agricultural phosphorus?. Science of the Total Environment, 2006, 360, 246-253.	8.0	387
2	Agriculture and Eutrophication: Where Do We Go from Here?. Sustainability, 2014, 6, 5853-5875.	3.2	370
3	Practical and Innovative Measures for the Control of Agricultural Phosphorus Losses to Water: An Overview. Journal of Environmental Quality, 2000, 29, 1-9.	2.0	343
4	Phosphorus Mitigation to Control River Eutrophication: Murky Waters, Inconvenient Truths, and "Postnormal―Science. Journal of Environmental Quality, 2013, 42, 295-304.	2.0	238
5	Struvite: a slow-release fertiliser for sustainable phosphorus management?. Plant and Soil, 2016, 401, 109-123.	3.7	235
6	Feed the Crop Not the Soil: Rethinking Phosphorus Management in the Food Chain. Environmental Science & Technology, 2014, 48, 6523-6530.	10.0	224
7	Future agriculture with minimized phosphorus losses to waters: Research needs and direction. Ambio, 2015, 44, 163-179.	5.5	210
8	REVIEW: Nutrient stripping: the global disparity between food security and soil nutrient stocks. Journal of Applied Ecology, 2013, 50, 851-862.	4.0	199
9	Integrating legacy soil phosphorus into sustainable nutrient management strategies for future food, bioenergy and water security. Nutrient Cycling in Agroecosystems, 2016, 104, 393-412.	2.2	199
10	Stewardship to tackle global phosphorus inefficiency: The case of Europe. Ambio, 2015, 44, 193-206.	5.5	174
11	Transitions to sustainable management of phosphorus in Brazilian agriculture. Scientific Reports, 2018, 8, 2537.	3.3	172
12	Greening the global phosphorus cycle: how green chemistry can help achieve planetary P sustainability. Green Chemistry, 2015, 17, 2087-2099.	9.0	170
13	Agricultural nutrient inputs to rivers and groundwaters in the UK: policy, environmental management and research needs. Science of the Total Environment, 2002, 282-283, 9-24.	8.0	166
14	Implementing agricultural phosphorus science and management to combat eutrophication. Ambio, 2015, 44, 297-310.	5.5	164
15	Legacy phosphorus and no tillage agriculture in tropical oxisols of the Brazilian savanna. Science of the Total Environment, 2016, 542, 1050-1061.	8.0	161
16	Phosphorus Transfer in Runoff Following Application of Fertilizer, Manure, and Sewage Sludge. Journal of Environmental Quality, 2001, 30, 180-188.	2.0	161
17	The environmentally-sound management of agricultural phosphorus. Fertilizer Research, 1994, 39, 133-146.	0.5	146
18	Incidental phosphorus losses– are they significant and can they be predicted?. Journal of Plant Nutrition and Soil Science, 2003, 166, 459-468.	1.9	131

PAUL J A WITHERS

#	Article	IF	CITATIONS
19	Advances in the understanding of nutrient dynamics and management in UK agriculture. Science of the Total Environment, 2012, 434, 39-50.	8.0	101
20	Prospects for Controlling Nonpoint Phosphorus Loss to Water: A UK Perspective. Journal of Environmental Quality, 2000, 29, 167-175.	2.0	82
21	The strategic significance of wastewater sources to pollutant phosphorus levels in English rivers and to environmental management for rural, agricultural and urban catchments. Science of the Total Environment, 2010, 408, 1485-1500.	8.0	73
22	Life Cycle Assessment of Biofertilizer Production and Use Compared with Conventional Liquid Digestate Management. Environmental Science & Technology, 2018, 52, 7468-7476.	10.0	68
23	Septic tank discharges as multi-pollutant hotspots in catchments. Science of the Total Environment, 2016, 542, 854-863.	8.0	64
24	Nutrient hydrochemistry for a groundwater-dominated catchment: The Hampshire Avon, UK. Science of the Total Environment, 2005, 344, 143-158.	8.0	59
25	Phosphorus recovery: a need for an integrated approach. Ecosystem Health and Sustainability, 2018, 4, 48-57.	3.1	58
26	Reducing soil phosphorus fertility brings potential long-term environmental gains: A UK analysis. Environmental Research Letters, 2017, 12, 063001.	5.2	52
27	A Global Perspective on Integrated Strategies to Manage Soil Phosphorus Status for Eutrophication Control without Limiting Land Productivity. Journal of Environmental Quality, 2019, 48, 1234-1246.	2.0	48
28	Solubility, Diffusion and Crop Uptake of Phosphorus in Three Different Struvites. Sustainability, 2019, 11, 134.	3.2	47
29	Effects of Cover Crops and Phosphorus Sources on Maize Yield, Phosphorus Uptake, and Phosphorus Use Efficiency. Agronomy Journal, 2017, 109, 1039-1047.	1.8	45
30	Achieving Sustainable Phosphorus Use in Food Systems through Circularisation. Sustainability, 2018, 10, 1804.	3.2	45
31	Sustainable strategies towards a phosphorus circular economy. Nutrient Cycling in Agroecosystems, 2016, 104, 259-264.	2.2	44
32	Towards resolving the phosphorus chaos created by food systems. Ambio, 2020, 49, 1076-1089.	5.5	41
33	Closing the phosphorus cycle. Nature Sustainability, 2019, 2, 1001-1002.	23.7	40
34	Improving phosphorus sustainability of sugarcane production in Brazil. GCB Bioenergy, 2019, 11, 1444-1455.	5.6	37
35	Quantifying Phosphorus Retention and Release in Rivers and Watersheds Using Extended Endâ€Member Mixing Analysis (Eâ€EMMA). Journal of Environmental Quality, 2011, 40, 492-504.	2.0	35
36	Phosphate depletion modulates auxin transport in Triticum aestivum leading to altered root branching. Journal of Experimental Botany, 2014, 65, 5023-5032.	4.8	31

PAUL J A WITHERS

#	Article	IF	CITATIONS
37	Potential tracers for tracking septic tank effluent discharges in watercourses. Environmental Pollution, 2017, 228, 245-255.	7.5	31
38	Guiding phosphorus stewardship for multiple ecosystem services. Ecosystem Health and Sustainability, 2016, 2, .	3.1	30
39	The contribution of household chemicals to environmental discharges via effluents: Combining chemical and behavioural data. Journal of Environmental Management, 2015, 150, 427-434.	7.8	25
40	A Global Perspective on Phosphorus Management Decision Support in Agriculture: Lessons Learned and Future Directions. Journal of Environmental Quality, 2019, 48, 1218-1233.	2.0	22
41	Prioritizing Waterbodies To Balance Agricultural Production and Environmental Outcomes. Environmental Science & Technology, 2014, 48, 7697-7699.	10.0	17
42	Temporal variability in domestic point source discharges and their associated impact on receiving waters. Science of the Total Environment, 2016, 571, 1275-1283.	8.0	17
43	Phosphate Sources and Filter Cake Amendment Affecting Sugarcane Yield and Soil Phosphorus Fractions. Revista Brasileira De Ciencia Do Solo, 2019, 43, .	1.3	15
44	Plant-based diets add to the wastewater phosphorus burden. Environmental Research Letters, 2020, 15, 094018.	5.2	12
45	Removal and attenuation of sewage effluent combined tracer signals of phosphorus, caffeine and saccharin in soil. Environmental Pollution, 2017, 223, 277-285.	7.5	11
46	Are stakeholders ready to transform phosphorus use in food systems? A transdisciplinary study in a livestock intensive system. Environmental Science and Policy, 2022, 131, 177-187.	4.9	10
47	Map of total phosphorus content in native soils of Brazil. Scientia Agricola, 2021, 78, .	1.2	8
48	UK Government Policy and the Transition to a Circular Nutrient Economy. Sustainability, 2022, 14, 3310.	3.2	6
49	Combining Seed Dressing and Foliar Applications of Phosphorus Fertilizer Can Give Similar Crop Growth and Yield Benefits to Soil Applications Together With Greater Recovery Rates. Frontiers in Agronomy, 2020, 2, .	3.3	5
50	Environmental Management of Phosphorus Fertilizers. Agronomy, 0, , 781-827.	0.2	4
51	A new direction for tackling phosphorus inefficiency in the UK food system. Journal of Environmental Management, 2022, 314, 115021.	7.8	4