Guo-Hong Tao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2946808/publications.pdf

Version: 2024-02-01

85 papers 3,070 citations

30 h-index 53 g-index

87 all docs

87 docs citations

87 times ranked

2879 citing authors

#	Article	IF	CITATIONS
1	New generation ionic liquids: cations derived from amino acids. Chemical Communications, 2005, , 3562.	2.2	311
2	Preparation, characterization and application of amino acid-based green ionic liquids. Green Chemistry, 2006, 8, 639.	4.6	306
3	Nitrocyanamideâ€Based Ionic Liquids and Their Potential Applications as Hypergolic Fuels. Chemistry - A European Journal, 2010, 16, 5736-5743.	1.7	119
4	Energetic Salts Based on Monoanions of <i>N</i> , <i>N</i> ,êBis(1 <i>H</i> â€tetrazolâ€5â€yl)amine and 5,5′â€Bis(tetrazole). Chemistry - A European Journal, 2010, 16, 3753-3762.	1.7	112
5	Energetic nitrogen-rich salts and ionic liquids: 5-aminotetrazole (AT) as a weak acid. Journal of Materials Chemistry, 2008, 18, 5524.	6.7	110
6	High-performance particulate matter including nanoscale particle removal by a self-powered air filter. Nature Communications, 2020, 11, 1653.	5.8	108
7	Viscosity, Conductivity, and Electrochemical Property of Dicyanamide Ionic Liquids. Frontiers in Chemistry, 2018, 6, 59.	1.8	104
8	Aqueous-phase selective hydrogenation of phenol to cyclohexanone over soluble Pd nanoparticles. Green Chemistry, 2014, 16, 2664-2669.	4.6	95
9	Energetic Nitrogen-Rich Cu(II) and Cd(II) 5,5′-Azobis(tetrazolate) Complexes. Inorganic Chemistry, 2009, 48, 9918-9923.	1.9	78
10	Construction of Flexible Amineâ€linked Covalent Organic Frameworks by Catalysis and Reduction of Formic Acid via the Eschweiler–Clarke Reaction. Angewandte Chemie - International Edition, 2021, 60, 12396-12405.	7.2	77
11	Nitrogen-Rich 5-(1-Methylhydrazinyl)tetrazole and its Copper and Silver Complexes. Inorganic Chemistry, 2012, 51, 5305-5312.	1.9	76
12	A thermally stable nitrogen-rich energetic material—3,4,5-triamino-1-tetrazolyl-1,2,4-triazole (TATT). Journal of Materials Chemistry, 2009, 19, 5850.	6.7	70
13	Energetic 1,5-diamino-4H-tetrazolium nitro-substituted azolates. Journal of Materials Chemistry, 2010, 20, 2999.	6.7	70
14	Energetic Ionic Liquids based on Lanthanide Nitrate Complex Anions. Chemistry - A European Journal, 2008, 14, 11167-11173.	1.7	68
15	Waterâ€Free Rareâ€Earthâ€Metal Ionic Liquids/Ionic Liquid Crystals Based on Hexanitratolanthanate(III) Anion. Chemistry - A European Journal, 2013, 19, 4452-4461.	1.7	53
16	High yield of ethyl valerate from the esterification of renewable valeric acid catalyzed by amino acid ionic liquids. RSC Advances, 2013, 3, 4806.	1.7	49
17	BrÃ,nsted acidity of bio-protic ionic liquids: the acidic scale of [AA]X amino acid ionic liquids. Green Chemistry, 2015, 17, 5154-5163.	4.6	49
18	Highly efficient extraction of actinides with pillar[5]arene-derived diglycolamides in ionic liquids via a unique mechanism involving competitive host–guest interactions. Dalton Transactions, 2016, 45, 19299-19310.	1.6	49

#	Article	IF	Citations
19	Activation of the CF Bond: Transformation of CF ₃ NN―into 5â€Azidotetrazoles. Angewandte Chemie - International Edition, 2008, 47, 7087-7090.	7.2	46
20	Manipulating surface ligands of Copper Sulfide nanocrystals: Synthesis, characterization, and application to organic solar cells. Journal of Colloid and Interface Science, 2014, 419, 142-147.	5.0	44
21	Desymmetrized Vertex Design toward a Molecular Cage with Unusual Topology. Angewandte Chemie - International Edition, 2020, 59, 20846-20851.	7.2	44
22	Comparison of Polarities of Room-Temperature Ionic Liquids Using FT-IR Spectroscopic Probes. Australian Journal of Chemistry, 2005, 58, 327.	0.5	43
23	Designing high-performance hypergolic propellants based on materials genome. Science Advances, 2020, 6, .	4.7	43
24	Self-assembled ionic nanofibers derived from amino acids for high-performance particulate matter removal. Journal of Materials Chemistry A, 2019, 7, 4619-4625.	5.2	40
25	Alkylation of diphenyl oxide with \hat{l} ±-dodecene catalyzed by ionic liquids. Catalysis Today, 2004, 93-95, 301-305.	2.2	38
26	Slightly Viscous Amino Acid Ionic Liquids: Synthesis, Properties, and Calculations. Journal of Physical Chemistry B, 2009, 113, 15162-15169.	1.2	38
27	5â€(1,2,3â€Triazolâ€1â€yl)tetrazole Derivatives of an Azidotetrazole via Click Chemistry. Chemistry - A European Journal, 2009, 15, 9897-9904.	1.7	36
28	Impact of Silyl Enol Ether Stability on Palladium-Catalyzed Arylations. Organometallics, 2010, 29, 1818-1823.	1.1	35
29	Liquid Dinitromethanide Salts. Inorganic Chemistry, 2011, 50, 679-685.	1.9	34
30	Biocompatible Ionic Liquid Based on Curcumin as Fluorescence Probe for Detecting Benzoyl Peroxide without the Interference of H ₂ 0 ₂ . Analytical Chemistry, 2019, 91, 6593-6599.	3.2	33
31	Solubility of C60 in ionic liquids. Carbon, 2005, 43, 1782-1785.	5.4	30
32	Self-Healable, Malleable, and Flexible Ionic Polyimine as an Environmental Sensor for Portable Exogenous Pollutant Detection. , 2022, 4, 136-144.		30
33	Disubstituted Azidotetrazoles as Energetic Compounds. Chemistry - A European Journal, 2009, 15, 4102-4110.	1.7	29
34	Experimental and Theoretical Enthalpies of Formation of Glycine-Based Sulfate/Bisulfate Amino Acid Ionic Liquids. Journal of Physical Chemistry B, 2012, 116, 113-119.	1.2	29
35	Synthesis, Structure and Property of 5â€Aminotetrazolate Roomâ€Temperature Ionic Liquids. European Journal of Inorganic Chemistry, 2012, 2012, 3070-3078.	1.0	27
36	Handy fluorescent paper device based on a curcumin derivative for ultrafast detection of peroxide-based explosives. Chemical Communications, 2019, 55, 13661-13664.	2.2	27

#	Article	IF	Citations
37	Impact insensitive dinitromethanide salts. Chemical Communications, 2013, 49, 10329.	2.2	26
38	Nitrogenâ€Rich Energetic Ionic Liquids Based on the ⟨i>N⟨ i>,⟨i>N⟨ i>â€Bis(1⟨i>H⟨ i>â€tetrazolâ€5â€yl)amine Anion – Syntheses, Structures, and Properties. European Journal of Inorganic Chemistry, 2013, 2013, 5009-5019.	1.0	25
39	Super impact stable TATB explosives recrystallized by bicarbonate ionic liquids with a record solubility. Scientific Reports, 2020, 10, 4477.	1.6	23
40	Materials-Genome Approach to Energetic Materials. Accounts of Materials Research, 2021, 2, 692-696.	5.9	22
41	Synthesis, structure and near-infrared photoluminescence of hexanitratoneodymate ionic liquids. Dalton Transactions, 2015, 44, 2325-2332.	1.6	21
42	Novel Imidazolium-based Ionic Liquids with a Crown-ether Moiety. Chemistry Letters, 2005, 34, 1184-1185.	0.7	20
43	Impact Insensitive Dianionic Dinitrourea Salts: The CN4O52â^ Anion Paired with Nitrogen-Rich Cations. Energy & Samp; Fuels, 2009, 23, 4567-4574.	2.5	18
44	Long-lived luminescent soft materials of hexanitratosamarate(<scp>iii</scp>) complexes with orange visible emission. Dalton Transactions, 2015, 44, 8816-8823.	1.6	18
45	Structures and Properties of Luminescent Pentanitratoeuropate(III) Ionic Liquids. European Journal of Inorganic Chemistry, 2015, 2015, 542-551.	1.0	17
46	Is it Always Chemical When Amino Groups Come Across CO ₂ ? Anion–Anion-Interaction-Induced Inhibition of Chemical Adsorption. Journal of Physical Chemistry B, 2019, 123, 6536-6542.	1.2	17
47	Renewable Lanthanide Ionic Liquid/Polymer Composites for Highâ€Efficient Adsorption of Particulate Matter. Advanced Materials Interfaces, 2018, 5, 1700448.	1.9	16
48	Enhanced Solubility and Antitumor Activity of Curcumin via Breaking and Rebuilding of the Hydrogen Bond. ACS Applied Bio Materials, 2021, 4, 918-927.	2.3	16
49	Absorption and Capture of Methane into Ionic Liquid. Journal of Natural Gas Chemistry, 2006, 15, 282-286.	1.8	14
50	Electrochemical and Thermodynamic Properties of Ln(III) (Ln = Eu, Sm, Dy, Nd) in 1-Butyl-3-Methylimidazolium Bromide Ionic Liquid. PLoS ONE, 2014, 9, e95832.	1.1	14
51	Construction of Flexible Amineâ€linked Covalent Organic Frameworks by Catalysis and Reduction of Formic Acid via the Eschweiler–Clarke Reaction. Angewandte Chemie, 2021, 133, 12504-12513.	1.6	14
52	Covalent Organic Framework Membrane with Turing Structures for Deacidification of Highly Acidic Solutions. Advanced Functional Materials, 2022, 32, 2108178.	7.8	14
53	Ultralow-cost portable device for cesium detection via perovskite fluorescence. Journal of Hazardous Materials, 2022, 425, 127981.	6.5	14
54	A Redoxâ∈Responsive Complex System Based on 2â∈‰D Shapeâ∈Persistent Cyclo[6]aramide and Ferrocenium. Asian Journal of Organic Chemistry, 2016, 5, 966-970.	1.3	13

#	Article	IF	CITATIONS
55	Fluorescigenic Magnetofluids Based on Gadolinium, Terbium, and Dysprosium-Containing Imidazolium Salts. Inorganic Chemistry, 2018, 57, 6376-6390.	1.9	13
56	Ion-pair recognition of amidinium salts by partially hydrogen-bonded heteroditopic cyclo[6]aramide. RSC Advances, 2016, 6, 39839-39845.	1.7	12
57	Tunable luminescence of lanthanide (Ln = Sm, Eu, Tb) hydrophilic ionic polymers based on poly(N-methyl-4-vinylpyridinium-co-styrene) cations. Polymer Chemistry, 2016, 7, 7068-7077.	1.9	12
58	Theoretical Enthalpies of Formation of [AA]X and [AAE]X Type Amino Acid Ionic Liquids. Journal of Chemical & C	1.0	11
59	Bioâ€Based Antimicrobial Ionic Materials Fully Composed of Natural Products for Elevated Air Purification. Advanced Sustainable Systems, 2020, 4, 2000046.	2.7	10
60	Self-charge-carrying air filter by in situ polymerization to avoid charge dissipation and potential material poisoning. Chemical Engineering Journal, 2022, 449, 137788.	6.6	10
61	Selfâ€Assembled Biomimetic Capsules for Selfâ€Preservation. Small, 2020, 16, e2000930.	5.2	9
62	Theoretical Calculations on the Mechanism of Enantioselective Copper(I)-Catalyzed Addition of Enynes to Ketones. Catalysts, 2018, 8, 359.	1.6	8
63	Hydrogen-bonding and "π-π―interaction promoted solution-processable mixed matrix membranes for aromatic amines detection. Journal of Hazardous Materials, 2022, 430, 128490.	6.5	8
64	Insensitive ionic bio-energetic materials derived from amino acids. Scientific Reports, 2017, 7, 12744.	1.6	7
65	Hydrogenâ€Bondingâ€Driven Ionâ€Pair Formation in Protic Ionic Liquid Aqueous Solution. ChemPhysChem, 2019, 20, 3259-3268.	1.0	7
66	Desymmetrized Vertex Design toward a Molecular Cage with Unusual Topology. Angewandte Chemie, 2020, 132, 21032-21037.	1.6	7
67	Anomalous Melting Point of Multicharge Ionic Liquids: Structural, Electrostatic, and Orbital Properties of $[Ln(NO < sub > 3 < sub > 6 < sub > 3 < sub > 6 < sub > 3 < sub > 6 < sub > 3 < sub > 6 < sub > 3 < sub > 6 < sub > 3 < sub > 6 < sub > 6 < sub > 3 < sub > 6 $	1.9	7
68	High performance task-specific ionic liquid in uranium extraction endowed with negatively charged effect. Journal of Molecular Liquids, 2021, 336, 116601.	2.3	7
69	Insensitive energetic 5-nitroaminotetrazolate ionic liquids. RSC Advances, 2015, 5, 54527-54534.	1.7	6
70	Solution prepared O-doped ZnS nanocrystals: Structure characterization, energy level engineering and interfacial application in polymer solar cells. Solar Energy, 2018, 160, 353-359.	2.9	6
71	Virtual Reality Assisted General Education of Nuclear Chemistry and Radiochemistry. Journal of Chemical Education, 2022, 99, 777-786.	1.1	6
72	Interfacial Carrier-Transfer Channel Optimization Based on Hydrogen Bonds for High-Performance Organic Solar Cells. ACS Applied Energy Materials, 2021, 4, 3881-3890.	2.5	5

#	Article	IF	CITATIONS
73	Ultrasound-Responsive Ionic Liquid for Selective Phase Transition Extraction of Zr(IV) Ions. ACS Sustainable Chemistry and Engineering, 2022, 10, 9053-9065.	3.2	5
74	The influence of ionic radius of interfacial molecule on device performances of polymer solar cells. Solar Energy, 2018, 170, 906-912.	2.9	4
75	Synthesis, structure and properties of water-free pentanitratoyttrate(III) ionic liquids. Journal of Molecular Structure, 2020, 1222, 128953.	1.8	4
76	Conjugated Polyelectrolyte Combined with Ionic Liquid as the Hole Transport Layer for Efficient Inverted Perovskite Solar Cells. Journal of the Electrochemical Society, 2021, 168, 036503.	1.3	2
77	Energetic material derivatives of insoluble 3,4,5-triamino-1-tetrazolyl-1,2,4-triazole (TATT). Journal of Molecular Structure, 2022, 1262, 133099.	1.8	2
78	Particulate Matter Adsorbants: Renewable Lanthanide Ionic Liquid/Polymer Composites for Highâ€Efficient Adsorption of Particulate Matter (Adv. Mater. Interfaces 1/2018). Advanced Materials Interfaces, 2018, 5, 1870002.	1.9	1
79	Aminotriazolate ionic liquids: Synthesis, characterization and application as a probe for the detection of H2O2. Journal of Molecular Structure, 2022, 1266, 133511.	1.8	1
80	Novel Imidazolium-Based Ionic Liquids with a Crown-Ether Moiety ChemInform, 2006, 37, no.	0.1	0
81	Simple and Economical Procedure To Assemble pH Glass Membrane Electrodes Used in Chemical Education. Journal of Chemical Education, 2019, 96, 1773-1777.	1.1	O
82	Frontispiece: Construction of Flexible Amineâ€linked Covalent Organic Frameworks by Catalysis and Reduction of Formic Acid via the Eschweiler–Clarke Reaction. Angewandte Chemie - International Edition, 2021, 60, .	7.2	0
83	Frontispiz: Construction of Flexible Amineâ€linked Covalent Organic Frameworks by Catalysis and Reduction of Formic Acid via the Eschweiler–Clarke Reaction. Angewandte Chemie, 2021, 133, .	1.6	0
84	Encapsulation of Nitrate Ester Nanoparticles Into the SBA-15 Channels: Preparation, Characterizations and Reaction Mechanism. Advanced Porous Materials, 2014, 2, 22-30.	0.3	0
85	The Proton Dissociation of Bio-Protic Ionic Liquids: [AAE]X Amino Acid Ionic Liquids. Molecules, 2021, 26, 62.	1.7	О