
Harry C Blair

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2946630/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Phenylketonuria oxidative stress and energy dysregulation: Emerging pathophysiological elements provide interventional opportunity. Molecular Genetics and Metabolism, 2022, 136, 111-117.	0.5	10
2	Survival of the glycosylated. ELife, 2021, 10, .	2.8	1
3	Mesenchymal stem cell energy deficit and oxidative stress contribute to osteopenia in the Pahenu2 classical PKU mouse. Molecular Genetics and Metabolism, 2021, 132, 173-179.	0.5	8
4	The function of the calcium channel Orai1 in osteoclast development. FASEB Journal, 2021, 35, e21653.	0.2	4
5	A New View of Bone Loss in Phenylketonuria. Organogenesis, 2021, , 1-6.	0.4	2
6	Growth and mineralization of osteoblasts from mesenchymal stem cells on microporous membranes: Epithelial-like growth with transmembrane resistance and pH gradient. Biochemical and Biophysical Research Communications, 2021, 580, 14-19.	1.0	3
7	Phylogeny and chemistry of biological mineral transport. Bone, 2020, 141, 115621.	1.4	8
8	Generation of an immunodeficient mouse model of tcirg1-deficient autosomal recessive osteopetrosis. Bone Reports, 2020, 12, 100242.	0.2	4
9	Absence of Dipeptidyl Peptidase 3 Increases Oxidative Stress and Causes Bone Loss. Journal of Bone and Mineral Research, 2019, 34, 2133-2148.	3.1	32
10	The roles of Orai and Stim in bone health and disease. Cell Calcium, 2019, 81, 51-58.	1.1	14
11	Mucin 1 is Necessary for TrpV5 Localization in the Kidney's Distal Convoluted Tubule and Normal Bone Architecture. FASEB Journal, 2019, 33, .	0.2	0
12	A bone mineralization defect in the Pahenu2 model of classical phenylketonuria involves compromised mesenchymal stem cell differentiation. Molecular Genetics and Metabolism, 2018, 125, 193-199.	0.5	18
13	Western-type diet differentially modulates osteoblast, osteoclast, and lipoblast differentiation and activation in a background of APOE deficiency. Laboratory Investigation, 2018, 98, 1516-1526.	1.7	11
14	Adrenocorticotropic hormone and 1,25-dihydroxyvitamin D3 enhance human osteogenesis in vitro by synergistically accelerating the expression of bone-specific genes. Laboratory Investigation, 2017, 97, 1072-1083.	1.7	28
15	Osteoblast Differentiation and Bone Matrix Formation <i>In Vivo</i> and <i>In Vitro</i> . Tissue Engineering - Part B: Reviews, 2017, 23, 268-280.	2.5	329
16	Nature and nurture in atherosclerosis: The roles of acylcarnitine and cell membrane-fatty acid intermediates. Vascular Pharmacology, 2016, 78, 17-23.	1.0	21
17	Bone and high-density lipoprotein: The beginning of a beautiful friendship. World Journal of Orthopedics, 2016, 7, 74.	0.8	16
18	Chloride-hydrogen antiporters CIC-3 and CIC-5 drive osteoblast mineralization and regulate fine-structure bone patterning inÂvitro. Physiological Reports, 2015, 3, e12607.	0.7	19

HARRY C BLAIR

#	Article	IF	CITATIONS
19	Buried in the Middle but Guilty: Intronic Mutations in the <i>TCIRG1</i> Gene Cause Human Autosomal Recessive Osteopetrosis. Journal of Bone and Mineral Research, 2015, 30, 1814-1821.	3.1	39
20	The Proteasome Inhibitor Carfilzomib Suppresses Parathyroid Hormone-induced Osteoclastogenesis through a RANKL-mediated Signaling Pathway. Journal of Biological Chemistry, 2015, 290, 16918-16928.	1.6	21
21	The Trans-Fatty Acid, Elaidic Acid, Inhibits Macrophage Fatty Acid Catabolism and Stimulates Expression of Inflammatory Mediators. Blood, 2012, 120, 3277-3277.	0.6	0
22	Skeletal receptors for steroidâ€family regulating glycoprotein hormones. Annals of the New York Academy of Sciences, 2011, 1240, 26-31.	1.8	26
23	Calcium and bone disease. BioFactors, 2011, 37, 159-167.	2.6	58
24	Critical Role for the Calcium-Release Activated Calcium Channel Orai1 In RANKL-Stimulated Osteoclast Formation From Monocytic Cells. Blood, 2010, 116, 928-928.	0.6	1
25	Osteopetrosis with micro-lacunar resorption because of defective integrin organization. Laboratory Investigation, 2009, 89, 1007-1017.	1.7	15
26	The Developmental Basis of Skeletal Cell Differentiation and the Molecular Basis of Major Skeletal Defects. Biological Reviews, 2008, 83, 401-415.	4.7	28
27	Pituitary glycoprotein hormone receptors in non-endocrine organs. Trends in Endocrinology and Metabolism, 2007, 18, 227-233.	3.1	15
28	Balanced Regulation of Proliferation, Growth, Differentiation, and Degradation in Skeletal Cells. Annals of the New York Academy of Sciences, 2007, 1116, 165-173.	1.8	28
29	Osteoclastic differentiation and function regulated by old and new pathways. Reviews in Endocrine and Metabolic Disorders, 2007, 7, 23-32.	2.6	59
30	FSH Directly Regulates Bone Mass. Cell, 2006, 125, 247-260.	13.5	612
31	Osteoclastic Differentiation of Monocytes Is Inhibited by Non-Transcriptional Effects of Estrogen Mediated by BCAR1 Blood, 2006, 108, 1266-1266.	0.6	0
32	NO-dependent osteoclast motility: reliance on cGMP-dependent protein kinase I and VASP. Journal of Cell Science, 2005, 118, 5479-5487.	1.2	50
33	Osteoclast signalling pathways. Biochemical and Biophysical Research Communications, 2005, 328, 728-738.	1.0	145
34	In Vitro Differentiation of CD14 Cells From Osteopetrotic Subjects: Contrasting Phenotypes With TCIRG1, CLCN7, and Attachment Defects. Journal of Bone and Mineral Research, 2004, 19, 1329-1338.	3.1	31
35	Mechanisms balancing skeletal matrix synthesis and degradation. Biochemical Journal, 2002, 364, 329-341.	1.7	141