
Daniel Camas

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2946619/publications.pdf Version: 2024-02-01

DANIEL CAMAS

#	Article	IF	CITATIONS
1	Fatigue crack propagation analysis in 2024-T351 aluminium alloy using nonlinear parameters. International Journal of Fatigue, 2021, 153, 106478.	5.7	16
2	Numerical modelling of three-dimensional fatigue crack closure: Plastic wake simulation. International Journal of Fatigue, 2020, 131, 105344.	5.7	15
3	Three-dimensional fatigue crack closure numerical modelling: Crack growth scheme. Theoretical and Applied Fracture Mechanics, 2020, 108, 102623.	4.7	17
4	Numerical Analysis of the Influence of Crack Growth Scheme on Plasticity Induced Crack Closure Results. Structural Integrity, 2019, , 155-160.	1.4	3
5	Numerical analysis of the influence of the last cycle scheme on plasticity induced crack closure. Procedia Structural Integrity, 2019, 17, 894-899.	0.8	2
6	Numerical prediction of fatigue threshold of metallic materials in vacuum. Engineering Fracture Mechanics, 2019, 216, 106491.	4.3	7
7	Influence of plastic wake length on results of 3D numerical modelling of plasticity induced crack closure. Procedia Structural Integrity, 2019, 23, 607-612.	0.8	0
8	Elastic correction of fatigue crack growth laws. Fatigue and Fracture of Engineering Materials and Structures, 2019, 42, 1052-1061.	3.4	4
9	Numerical modelling of three-dimensional fatigue crack closure: Mesh refinement. International Journal of Fatigue, 2018, 113, 193-203.	5.7	38
10	Key Aspects in 3D Fatigue Crack Closure Numerical Modelling. Key Engineering Materials, 2018, 774, 441-446.	0.4	3
11	A study of the evolution of crack tip plasticity along a crack front. Theoretical and Applied Fracture Mechanics, 2018, 98, 59-66.	4.7	27
12	Corrections in numerical methodology to evaluate plasticity induced crack closure along the thickness. Theoretical and Applied Fracture Mechanics, 2018, 97, 215-223.	4.7	10
13	Study of the stress intensity factor analysis through thickness: methodological aspects. Fatigue and Fracture of Engineering Materials and Structures, 2017, 40, 1295-1308.	3.4	24
14	Numerical and experimental study of the plastic zone in cracked specimens. Engineering Fracture Mechanics, 2017, 185, 20-32.	4.3	35
15	A numerical analysis of CTOD in constant amplitude fatigue crack growth. Theoretical and Applied Fracture Mechanics, 2016, 85, 45-55.	4.7	46
16	Study of Fatigue Cracks with Numerical and Experimental Methods. Procedia Engineering, 2016, 160, 13-20.	1.2	4
17	Effect of compressive loads on plasticity induced crack closure. Theoretical and Applied Fracture Mechanics, 2015, 80, 193-204.	4.7	19
18	Empirical model for plasticityâ€induced crack closure based on <i>K</i> _{max} and Δ <i>K</i> . Fatigue and Fracture of Engineering Materials and Structures, 2015, 38, 983-996.	3.4	15

DANIEL CAMAS

#	Article	IF	CITATIONS
19	Finite element meshes for optimal modelling of plasticity induced crack closure. Engineering Fracture Mechanics, 2015, 142, 184-200.	4.3	35
20	A numerical study of plasticity induced crack closure under plane strain conditions. International Journal of Fatigue, 2015, 71, 75-86.	5.7	38
21	Stress intensity factor analysis of through thickness effects. International Journal of Fatigue, 2013, 46, 58-66.	5.7	42
22	Crack front curvature: Influence and effects on the crack tip fields in bi-dimensional specimens. International Journal of Fatigue, 2012, 44, 41-50.	5.7	47
23	Numerical study of the thickness transition in bi-dimensional specimen cracks. International Journal of Fatigue, 2011, 33, 921-928.	5.7	54
24	Numerical and experimental study of mixed-mode cracks in non-uniform stress field. Procedia Engineering, 2011, 10, 1691-1696.	1.2	3
25	Numerical and Experimental Analysis of Crack Closure. Key Engineering Materials, 0, 385-387, 369-372.	0.4	12
26	Numerical Study of the Influence of the Crack Front Curvature in the Evolution of the Plastic Zone along the CT Specimen Thickness. Key Engineering Materials, 0, 465, 119-122.	0.4	4
27	Numerical Analysis of the Pivot Node in Fracture Problems. Key Engineering Materials, 0, 774, 473-478.	0.4	0