
Michele Bacciocchi

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2946560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Effect of agglomeration on the natural frequencies of functionally graded carbon nanotube-reinforced laminated composite doubly-curved shells. Composites Part B: Engineering, 2016, 89, 187-218.	5.9	306
2	Free vibrations of free-form doubly-curved shells made of functionally graded materials using higher-order equivalent single layer theories. Composites Part B: Engineering, 2014, 67, 490-509.	5.9	217
3	Free vibration analysis of arbitrarily shaped Functionally Graded Carbon Nanotube-reinforced plates. Composites Part B: Engineering, 2017, 115, 384-408.	5.9	202
4	Linear static response of nanocomposite plates and shells reinforced by agglomerated carbon nanotubes. Composites Part B: Engineering, 2017, 115, 449-476.	5.9	148
5	Multiscale approach for threeâ€phase CNT/polymer/fiber laminated nanocomposite structures. Polymer Composites, 2019, 40, E102.	2.3	126
6	The local GDQ method applied to general higher-order theories of doubly-curved laminated composite shells and panels: The free vibration analysis. Composite Structures, 2014, 116, 637-660.	3.1	119
7	Higher-order theories for the free vibrations of doubly-curved laminated panels with curvilinear reinforcing fibers by means of a local version of the GDQ method. Composites Part B: Engineering, 2015, 81, 196-230.	5.9	108
8	The GDQ method for the free vibration analysis of arbitrarily shaped laminated composite shells using a NURBS-based isogeometric approach. Composite Structures, 2016, 154, 190-218.	3.1	97
9	Vibration analysis of variable thickness plates and shells by the Generalized Differential Quadrature method. Composite Structures, 2016, 156, 218-237.	3.1	97
10	Free vibrations of composite oval and elliptic cylinders by the generalized differential quadrature method. Thin-Walled Structures, 2015, 97, 114-129.	2.7	92
11	Higher-order structural theories for the static analysis of doubly-curved laminated composite panels reinforced by curvilinear fibers. Thin-Walled Structures, 2016, 102, 222-245.	2.7	90
12	A new doubly-curved shell element for the free vibrations of arbitrarily shaped laminated structures based on Weak Formulation IsoGeometric Analysis. Composite Structures, 2017, 171, 429-461.	3.1	88
13	Nonlocal bending analysis of curved nanobeams reinforced by graphene nanoplatelets. Composites Part B: Engineering, 2019, 166, 1-12.	5.9	88
14	The local GDQ method for the natural frequencies of doubly-curved shells with variable thickness: A general formulation. Composites Part B: Engineering, 2016, 92, 265-289.	5.9	82
15	Accurate inter-laminar recovery for plates and doubly-curved shells with variable radii of curvature using layer-wise theories. Composite Structures, 2015, 124, 368-393.	3.1	81
16	A Numerical Investigation on the Natural Frequencies of FGM Sandwich Shells with Variable Thickness by the Local Generalized Differential Quadrature Method. Applied Sciences (Switzerland), 2017, 7, 131.	1.3	81
17	Dynamic analysis of thick and thin elliptic shell structures made of laminated composite materials. Composite Structures, 2015, 133, 278-299.	3.1	74
18	Radial basis functions based on differential quadrature method for the free vibration analysis of laminated composite arbitrarily shaped plates. Composites Part B: Engineering, 2015, 78, 65-78.	5.9	74

Міснеге Вассіоссні

#	Article	IF	CITATIONS
19	MLSDQ based on RBFs for the free vibrations of laminated composite doubly-curved shells. Composites Part B: Engineering, 2016, 99, 30-47.	5.9	74
20	Influence of Winkler-Pasternak Foundation on the Vibrational Behavior of Plates and Shells Reinforced by Agglomerated Carbon Nanotubes. Applied Sciences (Switzerland), 2017, 7, 1228.	1.3	69
21	On the mechanics of laminated doubly-curved shells subjected to point and line loads. International Journal of Engineering Science, 2016, 109, 115-164.	2.7	68
22	Stability and accuracy of three Fourier expansionâ€based strong form finite elements for the free vibration analysis of laminated composite plates. International Journal for Numerical Methods in Engineering, 2017, 111, 354-382.	1.5	67
23	Free Vibration Analysis of Functionally Graded Porous Doubly-Curved Shells Based on the First-Order Shear Deformation Theory. Applied Sciences (Switzerland), 2017, 7, 1252.	1.3	66
24	Strong and weak formulations based on differential and integral quadrature methods for the free vibration analysis of composite plates and shells: Convergence and accuracy. Engineering Analysis With Boundary Elements, 2018, 92, 3-37.	2.0	64
25	A new approach for treating concentrated loads in doubly-curved composite deep shells with variable radii of curvature. Composite Structures, 2015, 131, 433-452.	3.1	61
26	A posteriori stress and strain recovery procedure for the static analysis of laminated shells resting on nonlinear elastic foundation. Composites Part B: Engineering, 2017, 126, 162-191.	5.9	56
27	An Equivalent Layer-Wise Approach for the Free Vibration Analysis of Thick and Thin Laminated and Sandwich Shells. Applied Sciences (Switzerland), 2017, 7, 17.	1.3	45
28	Application of sinusoidal shear deformation theory and physical neutral surface to analysis of functionally graded piezoelectric plate. Composites Part B: Engineering, 2018, 151, 35-50.	5.9	42
29	First-order shear deformation theory for orthotropic doubly-curved shells based on a modified couple stress elasticity. Aerospace Science and Technology, 2018, 73, 129-147.	2.5	39
30	Conforming and nonconforming laminated finite element Kirchhoff nanoplates in bending using strain gradient theory. Computers and Structures, 2020, 239, 106322.	2.4	39
31	Mechanical behavior of damaged laminated composites plates and shells: Higher-order Shear Deformation Theories. Composite Structures, 2018, 189, 304-329.	3.1	38
32	Foam core composite sandwich plates and shells with variable stiffness: Effect of the curvilinear fiber path on the modal response. Journal of Sandwich Structures and Materials, 2019, 21, 320-365.	2.0	38
33	Interpretation of boundary conditions in the analytical and numerical shell solutions for mode analysis of multilayered structures. International Journal of Mechanical Sciences, 2017, 122, 18-28.	3.6	37
34	Boundary Conditions in 2D Numerical and 3D Exact Models for Cylindrical Bending Analysis of Functionally Graded Structures. Shock and Vibration, 2016, 2016, 1-17.	0.3	36
35	Three-phase homogenization procedure for woven fabric composites reinforced by carbon nanotubes in thermal environment. Composite Structures, 2020, 254, 112840.	3.1	34
36	Refined shear deformation theories for laminated composite arches and beams with variable thickness: Natural frequency analysis. Engineering Analysis With Boundary Elements, 2019, 100, 24-47.	2.0	31

Міснеге Вассіоссні

#	Article	IF	CITATIONS
37	Linear Static Behavior of Damaged Laminated Composite Plates and Shells. Materials, 2017, 10, 811.	1.3	28
38	Refined 2D and Exact 3D Shell Models for the Free Vibration Analysis of Single- and Double-Walled Carbon Nanotubes. Technologies, 2015, 3, 259-284.	3.0	25
39	Buckling analysis of three-phase CNT/polymer/fiber functionally graded orthotropic plates: Influence of the non-uniform distribution of the oriented fibers on the critical load. Engineering Structures, 2020, 223, 111176.	2.6	21
40	The use of sustainable composites for the manufacturing of electric cars. Composites Part C: Open Access, 2021, 4, 100096.	1.5	21
41	Dynamic stability of doubly-curved multilayered shells subjected to arbitrarily oriented angular velocities: Numerical evaluation of the critical speed. Composite Structures, 2018, 201, 1031-1055.	3.1	20
42	Free Vibrations of Sandwich Plates with Damaged Soft-Core and Non-Uniform Mechanical Properties: Modeling and Finite Element Analysis. Materials, 2019, 12, 2444.	1.3	20
43	Critical buckling load of honeycomb sandwich panels reinforced by three-phase orthotropic skins enhanced by carbon nanotubes. Composite Structures, 2020, 237, 111904.	3.1	19
44	Analytical solutions for vibrations and buckling analysis of laminated composite nanoplates based on third-order theory and strain gradient approach. Composite Structures, 2021, 272, 114083.	3.1	18
45	Linear eigenvalue analysis of laminated thin plates including the strain gradient effect by means of conforming and nonconforming rectangular finite elements. Computers and Structures, 2021, 257, 106676.	2.4	18
46	Time-dependent behavior of viscoelastic three-phase composite plates reinforced by Carbon nanotubes. Composite Structures, 2019, 216, 20-31.	3.1	17
47	Static finite element analysis of thin laminated strain gradient nanoplates in hygro-thermal environment. Continuum Mechanics and Thermodynamics, 2021, 33, 969-992.	1.4	17
48	Mechanical behaviour of composite Cosserat solids in elastic problems with holes and discontinuities. Composite Structures, 2017, 179, 468-481.	3.1	16
49	Finite bending of hyperelastic beams with transverse isotropy generated by longitudinal porosity. European Journal of Mechanics, A/Solids, 2021, 85, 104131.	2.1	14
50	Multi-phase homogenization procedure for estimating the mechanical properties of shot-earth materials. Composite Structures, 2022, 295, 115799.	3.1	13
51	On the Convergence of Laminated Composite Plates of Arbitrary Shape through Finite Element Models. Journal of Composites Science, 2018, 2, 16.	1.4	11
52	The strong formulation finite element method: stability and accuracy. Frattura Ed Integrita Strutturale, 2014, 8, 251-265.	0.5	10
53	Modeling and numerical investigation of the viscoelastic behavior of laminated concrete beams strengthened by CFRP strips and carbon nanotubes. Construction and Building Materials, 2020, 233, 117311.	3.2	10
54	Effect of Curvilinear Reinforcing Fibers on the Linear Static Behavior of Soft-Core Sandwich Structures. Journal of Composites Science, 2018, 2, 14.	1.4	9

Міснеге Вассіоссні

#	Article	IF	CITATIONS
55	Natural Frequency Analysis of Functionally Graded Orthotropic Cross-Ply Plates Based on the Finite Element Method. Mathematical and Computational Applications, 2019, 24, 52.	0.7	9
56	Third-Order Theory for the Bending Analysis of Laminated Thin and Thick Plates Including the Strain Gradient Effect. Materials, 2021, 14, 1771.	1.3	9
57	Finite anticlastic bending of hyperelastic laminated beams with a rubberlike core. Mechanics of Advanced Materials and Structures, 2022, 29, 3674-3693.	1.5	7
58	Bending of hyperelastic beams made of transversely isotropic material in finite elasticity. Applied Mathematical Modelling, 2021, 100, 55-76.	2.2	6
59	Laminated Composite Doubly-Curved Shell Structures. Differential Geometry Higher-Order Structural Theories. Structural and Computational Mechanics Book Series, 2016, , .	0.4	4
60	Numerical Investigation of Composite Materials with Inclusions and Discontinuities. Key Engineering Materials, 0, 747, 69-76.	0.4	3
61	Laminated Composite Doubly-Curved Shell Structures. Differential and Integral Quadrature Strong Formulation Finite Element Method. Structural and Computational Mechanics Book Series, 2016, , .	0.4	3
62	Finite Elements Based on Strong and Weak Formulations for Structural Mechanics: Stability, Accuracy and Reliability. International Journal of Engineering and Applied Sciences, 2017, 9, 1-1.	0.1	3
63	Strutture a Guscio in Materiale Composito. Geometria Differenziale. Teorie di Ordine Superiore. Structural and Computational Mechanics Book Series, 2015, , .	0.4	2
64	Strutture a Guscio in Materiale Composito. Quadratura Differenziale e Integrale Elementi Finiti in Forma Forte. Structural and Computational Mechanics Book Series, 2015, , .	0.4	2
65	How to easily model doubly curved shells with variable radii of curvature. , 2017, , 177-180.		Ο