List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2946139/publications.pdf Version: 2024-02-01

		117625	182427
109	3,328	34	51
papers	citations	h-index	g-index
111	111	111	3148
all docs	docs citations	times ranked	citing authors

#	Article	lF	CITATIONS
1	S1P Signalling Axis Is Necessary for Adiponectin-Directed Regulation of Electrophysiological Properties and Oxidative Metabolism in C2C12 Myotubes. Cells, 2022, 11, 713.	4.1	8
2	Sphingosine 1-phosphate receptors are dysregulated in endometriosis: possible implication in transforming growth factor β–induced fibrosis. Fertility and Sterility, 2021, 115, 501-511.	1.0	19
3	Role of sphingosine 1-phosphate signalling in tissue fibrosis. Cellular Signalling, 2021, 78, 109861.	3.6	17
4	Role of Sphingosine 1-Phosphate Signalling Axis in Muscle Atrophy Induced by TNFα in C2C12 Myotubes. International Journal of Molecular Sciences, 2021, 22, 1280.	4.1	14
5	Phosphatidic Acid Stimulates Myoblast Proliferation through Interaction with LPA1 and LPA2 Receptors. International Journal of Molecular Sciences, 2021, 22, 1452.	4.1	8
6	A2B Adenosine Receptors and Sphingosine 1-Phosphate Signaling Cross-Talk in Oligodendrogliogenesis. Frontiers in Neuroscience, 2021, 15, 677988.	2.8	3
7	Sphingosine 1-phosphate signaling in uterine fibroids: implication in activin A pro-fibrotic effect. Fertility and Sterility, 2021, 115, 1576-1585.	1.0	7
8	Physiological and pathological roles of bioactive sphingolipids. Cellular Signalling, 2021, 86, 110102.	3.6	0
9	β3-adrenoreceptor blockade reduces tumor growth and increases neuronal differentiation in neuroblastoma via SK2/S1P2 modulation. Oncogene, 2020, 39, 368-384.	5.9	37
10	The WD40 repeat protein, WDR36, orchestrates sphingosine kinase-1 recruitment and phospholipase C-Î ² activation by Gq-coupled receptors. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158704.	2.4	5
11	Sphingosine 1-phosphate lyase blockade elicits myogenic differentiation of murine myoblasts acting via Spns2/S1P2 receptor axis. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2020, 1865, 158759.	2.4	5
12	Adenosine A2B receptors inhibit K+ currents and cell differentiation in cultured oligodendrocyte precursor cells and modulate sphingosine-1-phosphate signaling pathway. Biochemical Pharmacology, 2020, 177, 113956.	4.4	22
13	Glycans Meet Sphingolipids: Structure-Based Design of Glycan Containing Analogues of a Sphingosine Kinase Inhibitor. ACS Medicinal Chemistry Letters, 2020, 11, 913-920.	2.8	2
14	Sphingosine 1-phosphate-mediated activation of ezrin-radixin-moesin proteins contributes to cytoskeletal remodeling and changes of membrane properties in epithelial otic vesicle progenitors. Biochimica Et Biophysica Acta - Molecular Cell Research, 2019, 1866, 554-565.	4.1	16
15	Bradykinin mediates myogenic differentiation in murine myoblasts through the involvement of SK1/Spns2/S1P2 axis. Cellular Signalling, 2018, 45, 110-121.	3.6	25
16	Lysophosphatidic Acid Signaling Axis Mediates Ceramide 1-Phosphate-Induced Proliferation of C2C12 Myoblasts. International Journal of Molecular Sciences, 2018, 19, 139.	4.1	25
17	NMR metabolomics highlights sphingosine kinaseâ \in I as a new molecular switch in the orchestration of aberrant metabolic phenotype in cancer cells. Molecular Oncology, 2017, 11, 517-533.	4.6	35
18	Sphingosine 1-phosphate signaling axis mediates fibroblast growth factor 2-induced proliferation and survival of murine auditory neuroblasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 2017, 1864, 814-824.	4.1	20

#	Article	IF	CITATIONS
19	Ablation of S1P ₃ receptor protects mouse soleus from age-related drop in muscle mass, force, and regenerative capacity. American Journal of Physiology - Cell Physiology, 2017, 313, C54-C67.	4.6	8
20	S1P ₃ receptor influences key physiological properties of fast-twitch extensor digitorum longus muscle. Journal of Applied Physiology, 2016, 120, 1288-1300.	2.5	13
21	Sequential protein expression and selective labeling for in-cell NMR in human cells. Biochimica Et Biophysica Acta - General Subjects, 2016, 1860, 527-533.	2.4	17
22	Sphingosine 1-phosphate signaling pathway in inner ear biology. New therapeutic strategies for hearing loss?. Frontiers in Aging Neuroscience, 2015, 7, 60.	3.4	21
23	Endothelial sphingosine kinase/SPNS2 axis is critical for vessel-like formation by human mesoangioblasts. Journal of Molecular Medicine, 2015, 93, 1145-1157.	3.9	18
24	CTGF/CCN2 exerts profibrotic action in myoblasts via the up-regulation of sphingosine kinase-1/S1P3 signaling axis: Implications in the action mechanism of TGFI ² . Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2015, 1851, 194-202.	2.4	29
25	Lysophosphatidic acid stimulates cell migration of satellite cells. A role for the sphingosine kinase/sphingosine 1â€phosphate axis. FEBS Journal, 2014, 281, 4467-4478.	4.7	18
26	TGFβ1 evokes myoblast apoptotic response <i>via</i> a novel signaling pathway involving S1P ₄ transactivation upstream of Rhoâ€kinaseâ€2 activation. FASEB Journal, 2013, 27, 4532-4546.	0.5	41
27	New insights into the role of sphingosine 1-phosphate and lysophosphatidic acid in the regulation of skeletal muscle cell biology. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2013, 1831, 176-184.	2.4	22
28	Role of Sphingosine 1-Phosphate in Skeletal Muscle Cell Biology. Handbook of Experimental Pharmacology, 2013, , 457-467.	1.8	10
29	Sphingosine 1-phosphate axis: a new leader actor in skeletal muscle biology. Frontiers in Physiology, 2013, 4, 338.	2.8	45
30	Adenosine is present in rat brain synaptic vesicles. NeuroReport, 2013, 24, 982-987.	1.2	20
31	S1P ₂ receptor promotes mouse skeletal muscle regeneration. Journal of Applied Physiology, 2012, 113, 707-713.	2.5	23
32	Ceramide 1-phosphate stimulates proliferation of C2C12 myoblasts. Biochimie, 2012, 94, 597-607.	2.6	60
33	Sphingosine kinase/sphingosine 1-phosphate axis: a new player for insulin-like growth factor-1-induced myoblast differentiation. Skeletal Muscle, 2012, 2, 15.	4.2	36
34	Ecto-ATPase inhibition: ATP and adenosine release under physiological and ischemic in vivo conditions in the rat striatum. Experimental Neurology, 2012, 233, 193-204.	4.1	84
35	Sphingosine 1-phosphate stimulates proliferation and migration of satellite cells. Biochimica Et Biophysica Acta - Molecular Cell Research, 2012, 1823, 439-450.	4.1	74
36	Sphingosine 1-Phosphate Induces Differentiation of Mesoangioblasts towards Smooth Muscle. A Role for GATA6. PLoS ONE, 2011, 6, e20389.	2.5	23

#	Article	IF	CITATIONS
37	Metallothionein Induction in the Sandhopper Talitrus saltator (Montagu) (Crustacea, Amphipoda). Water, Air, and Soil Pollution, 2011, 219, 343-351.	2.4	3
38	Sphingosine kinase-1/S1P1 signalling axis negatively regulates mitogenic response elicited by PDGF in mouse myoblasts. Cellular Signalling, 2010, 22, 1688-1699.	3.6	35
39	An Active Form of Sphingosine Kinase-1 Is Released in the Extracellular Medium as Component of Membrane Vesicles Shed by Two Human Tumor Cell Lines. Journal of Oncology, 2010, 2010, 1-10.	1.3	29
40	Transforming Growth Factor-β1 Induces Transdifferentiation of Myoblasts into Myofibroblasts via Up-Regulation of Sphingosine Kinase-1/S1P ₃ Axis. Molecular Biology of the Cell, 2010, 21, 1111-1124.	2.1	136
41	Sphingosine Kinase Mediates Resistance to the Synthetic Retinoid N-(4-Hydroxyphenyl)retinamide in Human Ovarian Cancer Cells. Journal of Biological Chemistry, 2010, 285, 18594-18602.	3.4	43
42	TGFβ protects mesoangioblasts from apoptosis via sphingosine kinase-1 regulation. Cellular Signalling, 2009, 21, 228-236.	3.6	28
43	Sphingosine 1-phosphate increases glucose uptake through trans-activation of insulin receptor. Cellular and Molecular Life Sciences, 2009, 66, 3207-3218.	5.4	76
44	Sphingosine 1-phosphate induces differentiation of adipose tissue-derived mesenchymal stem cells towards smooth muscle cells. Cellular and Molecular Life Sciences, 2009, 66, 1741-1754.	5.4	58
45	Selective adenosine A2a receptor antagonism reduces JNK activation in oligodendrocytes after cerebral ischaemia. Brain, 2009, 132, 1480-1495.	7.6	85
46	Sphingosine 1-phosphate differentially regulates proliferation of C2C12 reserve cells and myoblasts. Molecular and Cellular Biochemistry, 2008, 314, 193-199.	3.1	34
47	Pleiotropic effects of sphingolipids in skeletal muscle. Cellular and Molecular Life Sciences, 2008, 65, 3725-3736.	5.4	59
48	Sphingosine kinase activity is required for myogenic differentiation of C2C12 myoblasts. Journal of Cellular Physiology, 2008, 214, 210-220.	4.1	62
49	Sphingosine 1-phosphate receptors modulate intracellular Ca2+ homeostasis. Biochemical and Biophysical Research Communications, 2007, 353, 268-274.	2.1	21
50	Tumor necrosis factorâ€Î± exerts proâ€myogenic action in C2C12 myoblasts via sphingosine kinase/S1P ₂ signaling. FEBS Letters, 2007, 581, 4384-4388.	2.8	40
51	Sphingosine 1-Phosphate Mediates Proliferation and Survival of Mesoangioblasts. Stem Cells, 2007, 25, 1713-1719.	3.2	69
52	Sphingosine 1-phosphate inhibits cell migration in C2C12 myoblasts. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2006, 1761, 43-51.	2.4	40
53	Sphingosine 1-phosphate regulates cytoskeleton dynamics: Implications in its biological response. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 2037-2048.	2.6	67
54	Endothelial Nitric Oxide Synthase Activation by Tumor Necrosis Factor α Through Neutral Sphingomyelinase 2, Sphingosine Kinase 1, and Sphingosine 1 Phosphate Receptors. Arteriosclerosis, Thrombosis, and Vascular Biology, 2006, 26, 99-105.	2.4	147

#	Article	IF	CITATIONS
55	Transcription regulation by the adaptor protein Fe65 and the nucleosome assembly factor SET. EMBO Reports, 2005, 6, 77-82.	4.5	86
56	Sphingosine 1-phosphate induces cytoskeletal reorganization in C2C12 myoblasts: physiological relevance for stress fibres in the modulation of ion current through stretch-activated channels. Journal of Cell Science, 2005, 118, 1161-1171.	2.0	63
57	Sphingosine 1â€phosphate regulates myogenic differentiation: a major role for S1P 2 receptor. FASEB Journal, 2005, 19, 1-22.	0.5	106
58	Sphingosine 1â€phosphate induces cell contraction via calciumâ€independent/Rhoâ€dependent pathways in undifferentiated skeletal muscle cells. Journal of Cellular Physiology, 2004, 198, 1-11.	4.1	26
59	Sphingosine kinase activity is required for sphingosine-mediated phospholipase D activation in C2C12 myoblasts. Biochemical Journal, 2004, 381, 655-663.	3.7	20
60	Fe65 is not involved in the platelet-derived growth factor-induced processing of Alzheimer's amyloid precursor protein, which activates its caspase-directed cleavage. Vol. 279 (2004) 16161-16169. Journal of Biological Chemistry, 2004, 279, 28826.	3.4	0
61	Effects of sphingosine 1-phosphate on excitation–contraction coupling in mammalian skeletal muscle. Journal of Muscle Research and Cell Motility, 2003, 24, 539-554.	2.0	27
62	Neutral ceramidase secreted by endothelial cells is released in part associated with caveolin-1. Archives of Biochemistry and Biophysics, 2003, 417, 27-33.	3.0	16
63	Down-regulation of EDG5/S1P2 during myogenic differentiation results in the specific uncoupling of sphingosine 1-phosphate signalling to phospholipase D. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2003, 1633, 133-142.	2.4	42
64	Activation of Phospholipase D by Bradykinin and Sphingosine 1-Phosphate in A549 Human Lung Adenocarcinoma Cells via Different GTP-Binding Proteins and Protein Kinase C Delta Signaling Pathwaysâ€. Biochemistry, 2003, 42, 284-292.	2.5	25
65	Sphingosine 1-phosphate signal transduction in muscle cells. Italian Journal of Biochemistry, 2003, 52, 25-7.	0.3	2
66	Sphingosine 1-phosphate evokes calcium signals in C2C12 myoblasts via Edg3 and Edg5 receptors. Biochemical Journal, 2002, 362, 349.	3.7	27
67	Sphingosine 1-phosphate evokes calcium signals in C2C12 myoblasts via Edg3 and Edg5 receptors. Biochemical Journal, 2002, 362, 349-357.	3.7	43
68	A role for calcium in sphingosine 1-phosphate-induced phospholipase D activity in C2C12 myoblasts. FEBS Letters, 2002, 521, 200-204.	2.8	10
69	Sphingosine 1-phosphate induces Ca2+ transients and cytoskeletal rearrangement in C2C12 myoblastic cells. American Journal of Physiology - Cell Physiology, 2002, 282, C1361-C1373.	4.6	29
70	Localization of neutral ceramidase in caveolin-enriched light membranes of murine endothelial cells. FEBS Letters, 2001, 506, 163-168.	2.8	24
71	The β-Amyloid Precursor Protein APP Is Tyrosine-phosphorylated in Cells Expressing a Constitutively Active Form of the Abl Protoncogene. Journal of Biological Chemistry, 2001, 276, 19787-19792.	3.4	111
72	Dual regulation of sphingosine 1-phosphate-induced phospholipase D activity through RhoA and protein kinase C-α in C2C12 myoblasts. Cellular Signalling, 2001, 13, 593-598.	3.6	12

#	Article	IF	CITATIONS
73	Expression and regulation of 6-phosphofructo-2-kinase/fructose-2,6-†bisphosphatase isozymes in white adipose tissue. FEBS Journal, 2001, 259, 756-761.	0.2	9
74	Characterization of sphingomyelinase activity released by thrombin-stimulated platelets. Molecular and Cellular Biochemistry, 2000, 205, 75-81.	3.1	38
75	Neutral/Alkaline and Acid Ceramidase Activities Are Actively Released by Murine Endothelial Cells. Biochemical and Biophysical Research Communications, 2000, 275, 746-751.	2.1	50
76	Sphingosine 1-phosphate induces arachidonic acid mobilization in A549 human lung adenocarcinoma cells. Biochimica Et Biophysica Acta - Molecular and Cell Biology of Lipids, 2000, 1483, 154-160.	2.4	18
77	Receptor-activated phospholipase D is present in caveolin-3-enriched light membranes of C2C12 myotubes. FEBS Letters, 2000, 473, 10-14.	2.8	14
78	Permissive role of protein kinase Cα but not protein kinase Cδ in sphingosine 1â€phosphateâ€induced RhoA activation in C2C12 myoblasts. FEBS Letters, 2000, 482, 97-101.	2.8	38
79	Effect of Rho and ADP-ribosylation Factor GTPases on Phospholipase D Activity in Intact Human Adenocarcinoma A549 Cells. Journal of Biological Chemistry, 1999, 274, 18605-18612.	3.4	60
80	Receptor-mediated activation of phospholipase D by sphingosine 1-phosphate in skeletal muscle C2C12 cells. FEBS Letters, 1999, 457, 184-188.	2.8	49
81	Glutathione transport system in human small intestine epithelial cells. Biochimica Et Biophysica Acta - Biomembranes, 1997, 1330, 274-283.	2.6	63
82	Bradykinin Increases Ceramide and Sphingosine Content in Human Fibroblasts: Possible Involvement of Glycosphingolipids. Biochemical and Biophysical Research Communications, 1996, 221, 1-7.	2.1	18
83	Activation of Phospholipase D in Human Fibroblasts by Ceramide and Sphingosine: Evaluation of Their Modulatory Role in Bradykinin Stimulation of Phospholipase D. Biochemical and Biophysical Research Communications, 1996, 225, 392-399.	2.1	24
84	Fructose 2,6-bisphosphate metabolism during megakaryocytic differentiation of K562 and MEG-01 cells. Molecular and Cellular Biochemistry, 1996, 156, 125-130.	3.1	2
85	1,25-Dihydroxyvitamin D3 inhibits proliferation of IMR-90 human fibroblasts and stimulates pyruvate kinase activity in confluent-phase cells. Molecular and Cellular Endocrinology, 1995, 115, 141-148.	3.2	15
86	Identification of a Specific Transport System for L-Arginine in Human Platelets. Biochemical and Biophysical Research Communications, 1995, 206, 878-884.	2.1	22
87	Bradykinin stimulates fructose 2,6-bisphosphate metabolism in human fibroblasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 1994, 1221, 233-237.	4.1	8
88	Involvement of protein kinase C and arachidonate signaling pathways in the alteration of proliferative response of senescent IMR-90 human fibroblasts. Mechanisms of Ageing and Development, 1994, 76, 101-111.	4.6	10
89	Glutamine Utilization in Resting and Stimulated Platelets. Journal of Biochemistry, 1993, 114, 163-166.	1.7	18
90	Role of the glycosylphosphatidylinositol/inositol phosphoglycan system in human fibroblast proliferation. Experimental Cell Research, 1992, 200, 439-443.	2.6	11

#	Article	IF	CITATIONS
91	An inositol phosphoglycan stimulates glycolysis in human platelets. Biochemical and Biophysical Research Communications, 1991, 180, 1041-1047.	2.1	6
92	A phospho-oligosaccharide can reproduce the stimulatory effect of insulin on glycolytic flux in human fibroblasts. Biochemical and Biophysical Research Communications, 1990, 166, 765-771.	2.1	16
93	Transformation by ras oncogene induces nuclear shift of protein kinase C. Biochemical and Biophysical Research Communications, 1990, 173, 528-533.	2.1	21
94	An endpoint enzymatic assay for fructose 2,6-bisphosphate performed in 96-well plates. Analytical Biochemistry, 1989, 178, 324-326.	2.4	17
95	Fructose 2,6-bisphosphate and insulin stimulation of glycolysis in 3T3-L1 adipocytes. International Journal of Biochemistry & Cell Biology, 1989, 21, 1359-1363.	0.5	1
96	pH sensitivity of the thrombin-induced rise in fructose 2,6-bisphosphate content of human platelets. Biochimica Et Biophysica Acta - Molecular Cell Research, 1989, 1011, 165-167.	4.1	2
97	Synthesis of diacylglycerol de novo is responsible for permanent activation and down-regulation of protein kinase C in transformed cells. Biochemical and Biophysical Research Communications, 1989, 164, 816-823.	2.1	38
98	Adenylate cyclase stimulating agents and mitogens raise fructose 2,6-bisphosphate levels in human fibroblasts Evidence for a dual control of the metabolite. FEBS Letters, 1987, 222, 27-31.	2.8	13
99	Fructose 2,6-bisphosphate in human platelets: Its possible role in the control of basal and thrombin-stimulated glycolysis. Biochemical and Biophysical Research Communications, 1986, 138, 666-672.	2.1	7
100	Regulation of fructose 2,6-bisphosphate metabolism in human fibroblasts. Biochimica Et Biophysica Acta - Molecular Cell Research, 1986, 887, 23-28.	4.1	10
101	Effects of pertussis toxin-catalyzed ADP-ribosylation on interactions of transducin and the inhibitory GTP-binding protein of adenylate cyclase with guanyl nucleotides. Biochemical and Biophysical Research Communications, 1985, 127, 999-1006.	2.1	11
102	Transformation of balb3T3 cells with EJ/T24/H-Ras oncogene inhibits adenylate cyclase response to β-adrenergic agonist while increases muscarinic receptor dependent hydrolysis of inositol lipids. Biochemical and Biophysical Research Communications, 1985, 132, 900-907.	2.1	38
103	Pertussis Toxin-Catalyzed ADP-Ribosylation: Effects on the Coupling of Inhibitory Receptors to the Adenylate Cyclase System. Journal of Receptors and Signal Transduction, 1984, 4, 459-474.	1.2	29
104	The effect of insulin on Fru-2,6-P2 levels in human fibroblasts. FEBS Letters, 1984, 171, 117-120.	2.8	22
105	Increase of the glycolytic rate in human resting fibroblasts following serum stimulation. FEBS Letters, 1983, 159, 39-42.	2.8	24
106	HUMAN DECIDUAL RELAXIN. Annals of the New York Academy of Sciences, 1982, 380, 87-97.	3.8	10
107	Changes in the G6PDH/6PGDH ratio in the chick brain during development. Experientia, 1982, 38, 1042-1043.	1.2	2
108	RELAXIN IN HUMAN DECIDUA. Journal of Clinical Endocrinology and Metabolism, 1980, 51, 939-941.	3.6	63

#	Article	IF	CITATIONS
109	Post-Translational Control of Enzymes Involved in Glucose Metabolism During the Early Growth Stimulation of Synchronized Fibroblasts Cultures. Caryologia, 1980, 33, 177-184.	0.3	Ο