Chengliang Wang

List of Publications by Citations

Source: https://exaly.com/author-pdf/2946121/chengliang-wang-publications-by-citations.pdf

Version: 2024-04-09

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

86 92 7,432 37 h-index g-index citations papers 12.6 8,784 6.4 104 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
92	Semiconducting Econjugated systems in field-effect transistors: a material odyssey of organic electronics. <i>Chemical Reviews</i> , 2012 , 112, 2208-67	68.1	2738
91	Organic semiconductor crystals. Chemical Society Reviews, 2018, 47, 422-500	58.5	429
90	High performance organic semiconductors for field-effect transistors. <i>Chemical Communications</i> , 2010 , 46, 5211-22	5.8	285
89	Extended Econjugated system for fast-charge and -discharge sodium-ion batteries. <i>Journal of the American Chemical Society</i> , 2015 , 137, 3124-30	16.4	275
88	Photoelectrodes based upon Mo:BiVO4 inverse opals for photoelectrochemical water splitting. <i>ACS Nano</i> , 2014 , 8, 7088-98	16.7	252
87	Large-scale highly ordered Sb nanorod array anodes with high capacity and rate capability for sodium-ion batteries. <i>Energy and Environmental Science</i> , 2015 , 8, 2954-2962	35.4	246
86	Emerging in-plane anisotropic two-dimensional materials. <i>Informa</i> Materilly, 2019 , 1, 54-73	23.1	175
85	Enhancement of Sodium Ion Battery Performance Enabled by Oxygen Vacancies. <i>Angewandte Chemie - International Edition</i> , 2015 , 54, 8768-71	16.4	150
84	Tailoring EConjugated Systems: From EStacking to High-Rate-Performance Organic Cathodes. <i>CheM</i> , 2018 , 4, 2600-2614	16.2	134
83	Highly Ordered Three-Dimensional Ni-TiO2 Nanoarrays as Sodium Ion Battery Anodes. <i>Chemistry of Materials</i> , 2015 , 27, 4274-4280	9.6	124
82	High performance supercapacitor for efficient energy storage under extreme environmental temperatures. <i>Nano Energy</i> , 2014 , 8, 231-237	17.1	118
81	Manipulation of Disodium Rhodizonate: Factors for Fast-Charge and Fast-Discharge Sodium-Ion Batteries with Long-Term Cyclability. <i>Advanced Functional Materials</i> , 2016 , 26, 1777-1786	15.6	117
80	An organic cathode with high capacities for fast-charge potassium-ion batteries. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 486-492	13	106
79	High-performance graphene devices on SiO//Si substrate modified by highly ordered self-assembled monolayers. <i>Advanced Materials</i> , 2011 , 23, 2464-8	24	93
78	Self-supported metallic nanopore arrays with highly oriented nanoporous structures as ideally nanostructured electrodes for supercapacitor applications. <i>Advanced Materials</i> , 2014 , 26, 7654-9	24	89
77	Cruciforms: Assembling Single Crystal Micro- and Nanostructures from One to Three Dimensions and Their Applications in Organic Field-Effect Transistors. <i>Chemistry of Materials</i> , 2009 , 21, 2840-2845	9.6	89
76	Amorphous TiO2 inverse opal anode for high-rate sodium ion batteries. <i>Nano Energy</i> , 2017 , 31, 514-524	17.1	85

(2016-2019)

75	A One-Dimensional Ed Conjugated Coordination Polymer for Sodium Storage with Catalytic Activity in Negishi Coupling. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 14731-14739	16.4	81
74	Constructing Universal Ionic Sieves via Alignment of Two-Dimensional Covalent Organic Frameworks (COFs). <i>Angewandte Chemie - International Edition</i> , 2018 , 57, 16072-16076	16.4	81
73	Oxygen vacancies: Effective strategy to boost sodium storage of amorphous electrode materials. <i>Nano Energy</i> , 2017 , 38, 304-312	17.1	70
72	Redox polymers for rechargeable metal-ion batteries. <i>EnergyChem</i> , 2020 , 2, 100030	36.9	69
71	Dibenzothiophene Derivatives: From Herringbone to Lamellar Packing Motif. <i>Crystal Growth and Design</i> , 2010 , 10, 4155-4160	3.5	69
70	Designing High Performance Organic Batteries. <i>Accounts of Chemical Research</i> , 2020 , 53, 2636-2647	24.3	67
69	Cost-effective atomic layer deposition synthesis of Pt nanotube arrays: application for high performance supercapacitor. <i>Small</i> , 2014 , 10, 3162-8	11	65
68	Carbonyl polymeric electrode materials for metal-ion batteries. <i>Chinese Chemical Letters</i> , 2018 , 29, 232-	-2844	61
67	A Selectively Permeable Membrane for Enhancing Cyclability of Organic Sodium-Ion Batteries. <i>Advanced Materials</i> , 2016 , 28, 9182-9187	24	59
66	Graphene and graphene oxide nanogap electrodes fabricated by atomic force microscopy nanolithography. <i>Applied Physics Letters</i> , 2010 , 97, 133301	3.4	57
65	Low-voltage organic field-effect transistors (OFETs) with solution-processed metal-oxide as gate dielectric. <i>ACS Applied Materials & Date Mat</i>	9.5	57
64	Recent progress in solid-state electrolytes for alkali-ion batteries. <i>Science Bulletin</i> , 2017 , 62, 1473-1490	10.6	51
63	Organic single crystal field-effect transistors based on 6H-pyrrolo[3,2-b:4,5-b]bis[1,4]benzothiazine and its derivatives. <i>Advanced Materials</i> , 2010 , 22, 2458-62	24	48
62	Large Econjugated Porous Frameworks as Cathodes for Sodium-Ion Batteries. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 3205-3211	6.4	48
61	Nanoengineering Energy Conversion and Storage Devices via Atomic Layer Deposition. <i>Advanced Energy Materials</i> , 2016 , 6, 1600468	21.8	46
60	Single crystal n-channel field effect transistors from solution-processed silylethynylated tetraazapentacene. <i>Journal of Materials Chemistry</i> , 2011 , 21, 15201		46
59	Biphase micro/nanometer sized single crystals of organic semiconductors: Control synthesis and their strong phase dependent optoelectronic properties. <i>Applied Physics Letters</i> , 2010 , 96, 143302	3.4	44
58	Understanding the Orderliness of Atomic Arrangement toward Enhanced Sodium Storage. Advanced Energy Materials, 2016, 6, 1600448	21.8	40

57	New type of organic semiconductors for field-effect transistors with carbon-carbon triple bonds. Journal of Materials Chemistry, 2009 , 19, 1477		39
56	Small amount COFs enhancing storage of large anions. <i>Energy Storage Materials</i> , 2020 , 27, 35-42	19.4	38
55	A highly conductive conjugated coordination polymer for fast-charge sodium-ion batteries: reconsidering its structures. <i>Chemical Communications</i> , 2019 , 55, 10856-10859	5.8	36
54	Facile Transferring of Wafer-Scale Ultrathin Alumina Membranes onto Substrates for Nanostructure Patterning. <i>ACS Nano</i> , 2015 , 9, 8584-91	16.7	35
53	Regulating the Solvation Sheath of Li Ions by Using Hydrogen Bonds for Highly Stable Lithium-Metal Anodes. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 10871-10879	16.4	35
52	Capacitive conjugated ladder polymers for fast-charge and -discharge sodium-ion batteries and hybrid supercapacitors. <i>Journal of Materials Chemistry A</i> , 2019 , 7, 20891-20898	13	33
51	Emerging organic potassium-ion batteries: electrodes and electrolytes. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 15547-15574	13	31
50	Hierarchical Sb-Ni nanoarrays as robust binder-free anodes for high-performance sodium-ion half and full cells. <i>Nano Research</i> , 2017 , 10, 3189-3201	10	31
49	Weak Intermolecular Interactions for Strengthening Organic Batteries. <i>Energy and Environmental Materials</i> , 2020 , 3, 441-452	13	30
48	Graphene/metal contacts: bistable states and novel memory devices. <i>Advanced Materials</i> , 2012 , 24, 261	4≥ 9	30
47	Toward Stable Lithium Plating/Stripping by Successive Desolvation and Exclusive Transport of Li Ions. <i>ACS Applied Materials & Desolvation and Exclusive Transport of Lions. ACS Applied Materials & Desolvation and Exclusive Transport of Lions. ACS Applied Materials & Desolvation and Exclusive Transport of Lions. ACS Applied Materials & Desolvation and Exclusive Transport of Lions. ACS Applied Materials & Desolvation and Exclusive Transport of Lions. ACS Applied Materials & Desolvation and Exclusive Transport of Lions. ACS Applied Materials & Desolvation and Exclusive Transport of Lions. ACS Applied Materials & Desolvation and Exclusive Transport of Lions. ACS Applied Materials & Desolvation and Exclusive Transport of Lions. ACS Applied Materials & Desolvation and Exclusive Transport of Lions. ACS Applied Materials & Desolvation and Exclusive Transport of Lions. ACS Applied Materials & Desolvation and Desolvation and Exclusive Transport of Lions. ACS Applied Materials & Desolvation and Desolva</i>	9.5	27
46	Intertwined Cu3V2O7(OH)2DH2O nanowires/carbon fibers composite: A new anode with high rate capability for sodium-ion batteries. <i>Journal of Power Sources</i> , 2015 , 294, 193-200	8.9	25
45	A One-Dimensional d Conjugated Coordination Polymer for Sodium Storage with Catalytic Activity in Negishi Coupling. <i>Angewandte Chemie</i> , 2019 , 131, 14873-14881	3.6	25
44	Development of organic field-effect properties by introducing aryl-acetylene into benzodithiophene. <i>Journal of Materials Chemistry</i> , 2010 , 20, 10931		24
43	Size control of zwitterionic polymer micro/nanospheres and its dependence on sodium storage. <i>Nanoscale Horizons</i> , 2019 , 4, 1092-1098	10.8	21
42	Enhancement of Sodium Ion Battery Performance Enabled by Oxygen Vacancies. <i>Angewandte Chemie</i> , 2015 , 127, 8892-8895	3.6	21
41	Langmuir B logett monolayer transistors of copper phthalocyanine. <i>Applied Physics Letters</i> , 2009 , 95, 033304	3.4	21
40	The chemical states of conjugated coordination polymers. <i>CheM</i> , 2021 , 7, 1224-1243	16.2	21

(2018-2015)

39	Synchronous Formation of ZnO/ZnS Core/Shell Nanotube Arrays with Removal of Template for Meliorating Photoelectronic Performance. <i>Journal of Physical Chemistry C</i> , 2015 , 119, 1575-1582	3.8	20
38	Dibenzo[b,d]thiophene based oligomers with carbon@arbon unsaturated bonds for high performance field-effect transistors. <i>Organic Electronics</i> , 2010 , 11, 544-551	3.5	19
37	Synergistic effect of organic plasticizer and lepidolite filler on polymer electrolytes for all-solid high-voltage Lifhetal batteries. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 5968-5974	13	18
36	Symmetry-Reduction Enhanced Polarization-Sensitive Photodetection in Core-Shell SbI /Sb O van der Waals Heterostructure. <i>Small</i> , 2020 , 16, e1907172	11	18
35	Highly-Ordered 3D Vertical Resistive Switching Memory Arrays with Ultralow Power Consumption and Ultrahigh Density. <i>ACS Applied Materials & Density (Nature of Science)</i> 10, 100 Memory Arrays with Ultrahow Power Consumption and Ultrahigh Density. <i>ACS Applied Materials & Density (Nature of Science)</i> 10, 100 Memory Arrays with Ultrahow Power Consumption and Ultrahigh Density. <i>ACS Applied Materials & Density (Nature of Science)</i> 10, 100 Memory Arrays with Ultrahow Power Consumption and Ultrahigh Density. <i>ACS Applied Materials & Density (Nature of Science)</i> 10, 100 Memory Arrays with Ultrahow Power Consumption and Ultrahom Density. <i>ACS Applied Materials & Density (Nature of Science)</i> 10, 100 Memory Arrays with Ultrahom Power Consumption and Ultrahom Density (Nature of Science) 10, 100 Memory Arrays with Ultrahom Power Consumption 10, 100 Memory Arrays with Ultrahom 10, 100 Memory Arrays with Ultraho	9.5	17
34	A 2D Layered Natural Ore as a Novel Solid-State Electrolyte. ACS Applied Energy Materials, 2019, 2, 5909	∕ 5916	17
33	Growth control of AgTCNQ nanowire arrays by using a template-assisted electro-deposition method. <i>Journal of Materials Chemistry C</i> , 2013 , 1, 8003	7.1	15
32	A branched dihydrophenazine-based polymer as a cathode material to achieve dual-ion batteries with high energy and power density. <i>EScience</i> , 2021 ,		15
31	Syntheses and properties of cyano and dicyanovinyl-substituted oligomers as organic semiconductors. <i>Synthetic Metals</i> , 2009 , 159, 1298-1301	3.6	14
30	2D Materials as Ionic Sieves for Inhibiting the Shuttle Effect in Batteries. <i>Chemistry - an Asian Journal</i> , 2020 , 15, 2294-2302	4.5	13
29	Two-dimensional Organic Supramolecule via Hydrogen Bonding and Estacking for Ultrahigh Capacity and Long-Life Aqueous Zinc-Organic Batteries <i>Angewandte Chemie - International Edition</i> , 2022 ,	16.4	12
28	Recent progress in organic electrodes for zinc-ion batteries. <i>Journal of Semiconductors</i> , 2020 , 41, 091704	1 2.3	12
27	Conjugated Coordination Polymers as Electrodes for Rechargeable Batteries. <i>ACS Applied Electronic Materials</i> , 2021 , 3, 1947-1958	4	12
26	Successive Storage of Cations and Anions by Ligands of Ed-Conjugated Coordination Polymers Enabling Robust Sodium-Ion Batteries. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 18769-1877	^{16.4}	12
25	Branched conjugated polymers for fast capacitive storage of sodium ions. <i>Journal of Materials Chemistry A</i> , 2020 , 8, 23851-23856	13	11
24	Constructing Universal Ionic Sieves via Alignment of Two-Dimensional Covalent Organic Frameworks (COFs). <i>Angewandte Chemie</i> , 2018 , 130, 16304-16308	3.6	11
23	Free-standing protective films for enhancing the cyclability of organic batteries. <i>Sustainable Energy and Fuels</i> , 2019 , 3, 142-147	5.8	10
22	Zooming in the Detailed Electrochemical Process of Disodium Rhodizonate. <i>Journal of Physical Chemistry C</i> , 2018 , 122, 21185-21191	3.8	10

21	Non-conjugated diketone as a linkage for enhancing the rate performance of poly(perylenediimides). <i>Journal of Materials Chemistry A</i> , 2020 , 8, 19283-19289	13	9
20	Electrolyte additives: Adding the stability of lithium metal anodes. <i>Nano Select</i> , 2021 , 2, 16-36	3.1	9
19	Vectorial diffusion for facile solution-processed self-assembly of insoluble semiconductors: a case study on metal phthalocyanines. <i>Chemistry - A European Journal</i> , 2014 , 20, 10990-5	4.8	7
18	Regulating the Solvation Sheath of Li Ions by Using Hydrogen Bonds for Highly Stable Lithium Metal Anodes. <i>Angewandte Chemie</i> , 2021 , 133, 10966-10974	3.6	7
17	Organic single crystals or crystalline micro/nanostructures: Preparation and field-effect transistor applications. <i>Science China Chemistry</i> , 2010 , 53, 1225-1234	7.9	6
16	Syntheses of molecular wires containing redox center: Reversible redox property and good energy level matching with Au electrode. <i>Chinese Chemical Letters</i> , 2008 , 19, 1285-1289	8.1	6
15	Regulating the metal nodes of 1D conjugated coordination polymers for enhancing the performance of sodium-ion batteries. <i>Journal of Materials Chemistry C</i> ,	7.1	5
14	Super-linear rectifying property of rubrene single crystal devices. <i>Organic Electronics</i> , 2011 , 12, 1731-17	′ 3 555	4
13	Heterochelation boosts sodium storage in 団 conjugated coordination polymers. <i>Energy and Environmental Science</i> ,	35.4	4
12	Organic/Polymeric Field-Effect Transistors 2013 , 95-170		3
11	A new pseudo rubrene analogue with excellent film forming ability. <i>Science China Chemistry</i> , 2011 , 54, 631-635	7.9	3
10	Perspectives of ionic covalent organic frameworks for rechargeable batteries. <i>Coordination Chemistry Reviews</i> , 2022 , 458, 214431	23.2	3
9	Synchronous sulfurization and carbonization using sulfur-rich metal-organic frameworks for		
	fast-charge sodium-ion batteries. <i>Journal of Power Sources</i> , 2020 , 478, 228778	8.9	3
8		8.9 7.2	3
8	fast-charge sodium-ion batteries. <i>Journal of Power Sources</i> , 2020 , 478, 228778 Diradicals or Zwitterions: The Chemical States of m -Benzoquinone and Structural Variation after	7.2	3
	fast-charge sodium-ion batteries. <i>Journal of Power Sources</i> , 2020 , 478, 228778 Diradicals or Zwitterions: The Chemical States of m -Benzoquinone and Structural Variation after Storage of Li Ions. <i>CCS Chemistry</i> , 2812-2825	7.2	3
7	fast-charge sodium-ion batteries. <i>Journal of Power Sources</i> , 2020 , 478, 228778 Diradicals or Zwitterions: The Chemical States of m -Benzoquinone and Structural Variation after Storage of Li Ions. <i>CCS Chemistry</i> , 2812-2825 Challenges and Perspectives of Organic Multivalent Metal-ion Batteries <i>Advanced Materials</i> , 2022 , e22	7.2 200662	3

LIST OF PUBLICATIONS

- 3 2D Silicate Materials for Composite Polymer Electrolytes. *Chemistry an Asian Journal*, **2021**, 16, 2842-28兵\$
- Storing Mg Ions in Polymers: A Perspective.. Macromolecular Rapid Communications, **2022**, e2200198 4.8
- P-N Junction Formation in Electron-beam Irradiated Graphene Step. *Materials Research Society Symposia Proceedings*, **2012**, 1407, 224

1