Mingxian Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2946089/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The Coreâ€Shell Magnetic Mesoporous Microspheres Immobilized NHCâ€Palladacycles: An Efficient and Recyclable Catalyst for Suzukiâ€Miyaura Crossâ€Coupling of Pharmaceutical Synthesis. Asian Journal of Organic Chemistry, 2022, 11, .	1.3	2
2	Magnetic mesoporous nanomaterials with AIE properties for selective detection and removal of CN ^{â^'} from water under magnetic conditions. Analyst, The, 2021, 146, 5550-5557.	1.7	4
3	Novel Magnetic Mesoporous Microâ€nano Particles Immobilized with Palladium Complex: An Efficient and Recyclable Catalyst for Suzukiâ€Miyaura Cross oupling Reaction in Ethanol. ChemistrySelect, 2021, 6, 2894-2900.	0.7	3
4	Preparation of Bi-based hydrogel for multi-modal tumor therapy. Colloids and Surfaces B: Biointerfaces, 2021, 200, 111591.	2.5	26
5	Hierarchical Core–Shell Fe ₃ O ₄ @mSiO ₂ @Chitosan Nanoparticles for pH-Responsive Drug Delivery. Journal of Nanoscience and Nanotechnology, 2021, 21, 3020-3027.	0.9	3
6	NIRâ€Responsive Fe ₃ O ₄ @MSN@PPyâ€PVP Nanoparticles as the Nanoâ€Enzyme for Potential Tumor Therapy. ChemistrySelect, 2021, 6, 6564-6573.	0.7	5
7	Facile synthesis of mesoporous copper silicate aggregates for highly selective enrichment of hemoglobin. Microchemical Journal, 2021, 167, 106256.	2.3	7
8	Highly efficient overall-water splitting enabled via grafting boron-inserted Fe-Ni solid solution nanosheets onto unconventional skeleton. Applied Catalysis B: Environmental, 2021, 292, 120188.	10.8	46
9	A novel fluorescent sensor based on triphenylamine with AIE properties for the highly sensitive detection of CNâ^'. Dyes and Pigments, 2021, 193, 109534.	2.0	26
10	Fe ₃ O ₄ @Mesoporous-SiO ₂ @Chitosan@Polyaniline Core–Shell Nanoparticles as Recyclable Adsorbents and Reductants for Hexavalent Chromium. ACS Applied Nano Materials, 2021, 4, 1831-1840.	2.4	22
11	An Alkoxy Modified <i>N</i> â€Heterocyclic Carbeneâ€Palladacycle: Synthesis, Characterization and Application towards Buchwaldâ€Hartwig and Suzukiâ€Miyaura Coupling Reactions. ChemistrySelect, 2021, 6, 10121-10126.	0.7	4
12	Preparation of electrospray ALG/PDA–PVP nanocomposites and their application in cancer therapy. Soft Matter, 2020, 16, 132-141.	1.2	31
13	Intelligent nanoenzyme for T1-weighted MRI guided theranostic applications. Chemical Engineering Journal, 2020, 391, 123609.	6.6	32
14	Magnetic Silica Nanosystems With NIR-Responsive and Redox Reaction Capacity for Drug Delivery and Tumor Therapy. Frontiers in Chemistry, 2020, 8, 567652.	1.8	13
15	Chiral separations with crosslinked cellulose derivatives attached onto hybrid silica monolith particles <i>via</i> the thiol–ene click reaction. Analytical Methods, 2020, 12, 2727-2734.	1.3	7
16	Ni-Catalyzed Denitrogenative Cross-Coupling of Benzotriazinones and Cyclopropanols: An Easy Access to Functionalized β-Aryl Ketones. Organic Letters, 2020, 22, 5020-5024.	2.4	44
17	Electroless plating-induced morphology self-assembly of free-standing Co–P–B enabling efficient overall water splitting. Electrochimica Acta, 2020, 354, 136645.	2.6	10
18	Recent Advances in the Synthesis, Surface Modifications and Applications of Coreâ€Shell Magnetic Mesoporous Silica Nanospheres. Chemistry - an Asian Journal, 2020, 15, 1248-1265.	1.7	39

Mingxian Huang

#	Article	IF	CITATIONS
19	Integration of Fe ₃ O ₄ with Bi ₂ S ₃ for Multi-Modality Tumor Theranostics. ACS Applied Materials & Interfaces, 2020, 12, 22650-22660.	4.0	54
20	Preparation of injectable temperature-sensitive chitosan-based hydrogel for combined hyperthermia and chemotherapy of colon cancer. Carbohydrate Polymers, 2019, 222, 115039.	5.1	104
21	Synthesis and biocompatibility of two-dimensional biomaterials. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2019, 583, 124004.	2.3	61
22	Synthesis, characterization, and luminescence properties of BiVO4:Eu3+ embedded Fe3O4@mSiO2 nanoparticles. Journal of Luminescence, 2019, 215, 116677.	1.5	20
23	Biodegradable Fe(III)@WS ₂ â€₽VP Nanocapsules for Redox Reaction and TMEâ€Enhanced Nanocatalytic, Photothermal, and Chemotherapy. Advanced Functional Materials, 2019, 29, 1901722.	7.8	128
24	One-pot synthesis of polypyrrole nanoparticles with tunable photothermal conversion and drug loading capacity. Colloids and Surfaces B: Biointerfaces, 2019, 177, 346-355.	2.5	50
25	Design of electrospun nanofibrous mats for osteogenic differentiation of mesenchymal stem cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2018, 14, 2505-2520.	1.7	60
26	Preparation of Poly(lacticâ€ <i>co</i> â€glycolic acid)â€Based Composite Microfibers for Postoperative Treatment of Tumor in NIR I and NIR II Biowindows. Macromolecular Bioscience, 2018, 18, e1800206.	2.1	20
27	Outside-in synthesis of mesoporous silica/molybdenum disulfide nanoparticles for antitumor application. Chemical Engineering Journal, 2018, 351, 157-168.	6.6	72
28	Preparation of silica microspheres with a broad pore size distribution and their use as the support for a coated cellulose derivative chiral stationary phase. Journal of Separation Science, 2018, 41, 1232-1239.	1.3	9
29	Bottom-up synthesis of WS2 nanosheets with synchronous surface modification for imaging guided tumor regression. Acta Biomaterialia, 2017, 58, 442-454.	4.1	83
30	Dendritic Mesoporous Silica Nanospheres Synthesized by a Novel Dual-Templating Micelle System for the Preparation of Functional Nanomaterials. Langmuir, 2017, 33, 519-526.	1.6	62
31	Phase-changeable and bubble-releasing implants for highly efficient HIFU-responsive tumor surgery and chemotherapy. Journal of Materials Chemistry B, 2016, 4, 7368-7378.	2.9	36
32	Synthesis of Cellulose-2,3-bis(3,5-dimethylphenylcarbamate) in an Ionic Liquid and Its Chiral Separation Efficiency as Stationary Phase. International Journal of Molecular Sciences, 2014, 15, 6161-6168.	1.8	7
33	Preparation of Bonded Cellulose Tris(3,5-dimethylphenylcarbamate) Chiral Stationary Phases by Using Three Bifunctional Reagents. Bulletin of the Korean Chemical Society, 2013, 34, 2623-2628.	1.0	1
34	A N â€Heterocyclic Carbeneâ€Palladacycle with Constrained Aliphatic Linker: Synthesis, Characterization and Its Catalytic Application towards Suzukiâ€Miyaura Cross oupling. Asian Journal of Organic Chemistry, 0, , .	1.3	5