
Kaiqi Nie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2945876/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	High Efficiency Photocatalytic Water Splitting Using 2D αâ€Fe ₂ 0 ₃ /gâ€C ₃ N ₄ Zâ€6cheme Catalysts. Advanced Ene Materials, 2017, 7, 1700025.	ergy 10.2	664
2	Mo ₂ C Nanoparticles Dispersed on Hierarchical Carbon Microflowers for Efficient Electrocatalytic Hydrogen Evolution. ACS Nano, 2016, 10, 11337-11343.	7.3	483
3	Supported Cobalt Polyphthalocyanine for High-Performance Electrocatalytic CO2 Reduction. CheM, 2017, 3, 652-664.	5.8	406
4	Phosphorus-Mo ₂ C@carbon nanowires toward efficient electrochemical hydrogen evolution: composition, structural and electronic regulation. Energy and Environmental Science, 2017, 10, 1262-1271.	15.6	379
5	Electrochemical CO ₂ Reduction with Atomic Ironâ€Dispersed on Nitrogenâ€Doped Graphene. Advanced Energy Materials, 2018, 8, 1703487.	10.2	369
6	Metallic Cobalt Nanoparticles Encapsulated in Nitrogenâ€Enriched Graphene Shells: Its Bifunctional Electrocatalysis and Application in Zinc–Air Batteries. Advanced Functional Materials, 2016, 26, 4397-4404.	7.8	350
7	<i>Operando</i> Spectroscopic Analysis of an Amorphous Cobalt Sulfide Hydrogen Evolution Electrocatalyst. Journal of the American Chemical Society, 2015, 137, 7448-7455.	6.6	330
8	Amorphous MoS ₃ Infiltrated with Carbon Nanotubes as an Advanced Anode Material of Sodiumâ€Ion Batteries with Large Gravimetric, Areal, and Volumetric Capacities. Advanced Energy Materials, 2017, 7, 1601602.	10.2	164
9	Safe and Durable High-Temperature Lithium–Sulfur Batteries via Molecular Layer Deposited Coating. Nano Letters, 2016, 16, 3545-3549.	4.5	157
10	The Doping Mechanism of Halide Perovskite Unveiled by Alkaline Earth Metals. Journal of the American Chemical Society, 2020, 142, 2364-2374.	6.6	132
11	Thin-Layer Fe ₂ TiO ₅ on Hematite for Efficient Solar Water Oxidation. ACS Nano, 2015, 9, 5348-5356.	7.3	121
12	Sn nanoparticles@nitrogen-doped carbon nanofiber composites as high-performance anodes for sodium-ion batteries. Journal of Materials Chemistry A, 2017, 5, 6277-6283.	5.2	91
13	Ultrafast All‧olid‧tate Coaxial Asymmetric Fiber Supercapacitors with a High Volumetric Energy Density. Advanced Energy Materials, 2018, 8, 1702946.	10.2	86
14	Spectroscopic Investigation of Plasma-Fluorinated Monolayer Graphene and Application for Gas Sensing. ACS Applied Materials & amp; Interfaces, 2016, 8, 8652-8661.	4.0	77
15	Hollow NiFe ₂ O ₄ nanospheres on carbon nanorods as a highly efficient anode material for lithium ion batteries. Journal of Materials Chemistry A, 2017, 5, 5007-5012.	5.2	77
16	Intermetallic PtBi core/ultrathin Pt shell nanoplates for efficient and stable methanol and ethanol electro-oxidization. Nano Research, 2019, 12, 429-436.	5.8	76
17	Renal-Clearable Ultrasmall Coordination Polymer Nanodots for Chelator-Free ⁶⁴ Cu-Labeling and Imaging-Guided Enhanced Radiotherapy of Cancer. ACS Nano, 2017, 11, 9103-9111.	7.3	73
18	Lowering the Onset Potential of Fe ₂ TiO ₅ /Fe ₂ O ₃ Photoanodes by Interface Structures: F- and Rh-Based Treatments. ACS Catalysis, 2017, 7, 4062-4069.	5.5	61

Kaiqi Nie

#	Article	IF	CITATIONS
19	Fe2TiO5-incorporated hematite with surface P-modification for high-efficiency solar water splitting. Nano Energy, 2017, 32, 526-532.	8.2	50
20	Synergistic Effects in CNTs-PdAu/Pt Trimetallic Nanoparticles with High Electrocatalytic Activity and Stability. Nano-Micro Letters, 2017, 9, 48.	14.4	45
21	Lithium nitrate: A double-edged sword in the rechargeable lithium-sulfur cell. Energy Storage Materials, 2019, 16, 498-504.	9.5	39
22	Interfacial Insight from Operando XAS/TEM for Magnesium Metal Deposition with Borohydride Electrolytes. Chemistry of Materials, 2017, 29, 7183-7188.	3.2	36
23	Improved Water Oxidation of Fe ₂ O ₃ /Fe ₂ TiO ₅ Photoanode by Functionalizing with a Hydrophilic Organic Hole Storage Overlayer. ACS Catalysis, 2022, 12, 7833-7842.	5.5	36
24	Atomic-scale understanding of the electronic structure-crystal facets synergy of nanopyramidal CoPi/BiVO4 hybrid photocatalyst for efficient solar water oxidation. Nano Energy, 2018, 53, 483-491.	8.2	31
25	Self-supported ultrathin mesoporous CoFe2O4/CoO nanosheet arrays assembled from nanowires with enhanced lithium storage performance. Journal of Materials Science, 2016, 51, 6590-6599.	1.7	16
26	Orientation and Ordering of Organic and Hybrid Inorganic–Organic Polyurea Films Using Molecular Layer Deposition. Journal of Physical Chemistry C, 2017, 121, 11757-11764.	1.5	13
27	Electronic structure of formamidinium ions in lead triiodide perovskites. Physica Status Solidi - Rapid Research Letters, 2016, 10, 677-681.	1.2	8
28	Real-time interface investigation on degradation mechanism of organic light-emitting diode by in-operando X-ray spectroscopies. Organic Electronics, 2020, 87, 105901.	1.4	2