List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2945686/publications.pdf Version: 2024-02-01

RDIAN KEV

#	Article	IF	CITATIONS
1	A First Principles Approach to Subjective Experience. Frontiers in Systems Neuroscience, 2022, 16, 756224.	1.2	3
2	Neural Design Principles for Subjective Experience: Implications for Insects. Frontiers in Behavioral Neuroscience, 2021, 15, 658037.	1.0	7
3	Pragmatic animal welfare is independent of feelings. Science, 2020, 370, 180-180.	6.0	1
4	Welfare of aquatic animals: where things are, where they are going, and what it means for research, aquaculture, recreational angling, and commercial fishing. ICES Journal of Marine Science, 2019, 76, 82-92.	1.2	70
5	Designing Brains for Pain: Human to Mollusc. Frontiers in Physiology, 2018, 9, 1027.	1.3	17
6	Problems with equating thermal preference with â€~emotional fever' and sentience: comment on â€~Fish can show emotional fever: stress-induced hyperthermia in zebrafish' by Rey <i>et al</i> . (2015). Proceedings of the Royal Society B: Biological Sciences, 2017, 284, 20160681.	1.2	6
7	Epidermal YAP2-5SA-ΔC Drives β-Catenin Activation to Promote Keratinocyte Proliferation in Mouse Skin InÂVivo. Journal of Investigative Dermatology, 2017, 137, 716-726.	0.3	17
8	Insects cannot tell us anything about subjective experience or the origin of consciousness. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, E3813-E3813.	3.3	8
9	Development and Regeneration of the Vertebrate Brain. , 2016, , 249-290.		Ο
10	Fish do not feel pain and its implications for understanding phenomenal consciousness. Biology and Philosophy, 2015, 30, 149-165.	0.7	50
11	Activity-dependent expression of neuronal PAS domain-containing protein 4 (npas4a) in the developing zebrafish brain. Frontiers in Neuroanatomy, 2014, 8, 148.	0.9	15
12	The E3 ubiquitin ligase Mycbp2 genetically interacts with Robo2 to modulate axon guidance in the mouse olfactory system. Brain Structure and Function, 2014, 219, 861-874.	1.2	9
13	Frizzled-3a and Wnt-8b genetically interact during forebrain commissural formation in embryonic zebrafish. Brain Research, 2013, 1506, 25-34.	1.1	12
14	Yap Controls Stem/Progenitor Cell Proliferation in the Mouse Postnatal Epidermis. Journal of Investigative Dermatology, 2013, 133, 1497-1505.	0.3	61
15	Growth cone dynamics in the zebrafish embryonic forebrain are regulated by Brother of Cdo. Neuroscience Letters, 2013, 545, 11-16.	1.0	6
16	Distinct expression patterns of syndecans in the embryonic zebrafish brain. Gene Expression Patterns, 2013, 13, 126-132.	0.3	13
17	Netrinâ€1 is required for efficient neural tube closure. Developmental Neurobiology, 2013, 73, 176-187.	1.5	10
18	The Expression Pattern of EVA1C, a Novel Slit Receptor, Is Consistent with an Axon Guidance Role in the Mouse Nervous System. PLoS ONE, 2013, 8, e74115.	1.1	13

#	Article	IF	CITATIONS
19	Repulsive guidance molecule A (RGMa). Cell Adhesion and Migration, 2012, 6, 85-90.	1.1	17
20	Novel Roles of the Chemorepellent Axon Guidance Molecule RGMa in Cell Migration and Adhesion. Molecular and Cellular Biology, 2012, 32, 968-980.	1.1	16
21	HuC–eGFP mosaic labelling of neurons in zebrafish enables in vivo live cell imaging of growth cones. Journal of Molecular Histology, 2012, 43, 615-623.	1.0	14
22	Frizzled-3a and slit2 genetically interact to modulate midline axon crossing in the telencephalon. Mechanisms of Development, 2012, 129, 109-124.	1.7	11
23	Dual roles of the chemorepellent axon guidance molecule RGMa in establishing pioneering axon tracts and neural fate decisions in embryonic vertebrate forebrain. Developmental Neurobiology, 2012, 72, 1458-1470.	1.5	10
24	Chemoattractant axon guidance cues regulate de novo axon trajectories in the embryonic forebrain of zebrafish. Developmental Biology, 2012, 367, 126-139.	0.9	7
25	Correction of aberrant axon growth in the developing mouse olfactory bulb. Molecular and Cellular Neurosciences, 2011, 46, 282-295.	1.0	7
26	The carbohydrate CT1 is expressed in topographically fixed glomeruli in the mouse olfactory bulb. Molecular and Cellular Neurosciences, 2011, 48, 9-19.	1.0	1
27	Stimulation of olfactory ensheathing cell motility enhances olfactory axon growth. Cellular and Molecular Life Sciences, 2011, 68, 3233-3247.	2.4	56
28	OMP-ZsGreen fluorescent protein transgenic mice for visualisation of olfactory sensory neurons in vivo and in vitro. Journal of Neuroscience Methods, 2011, 196, 88-98.	1.3	35
29	Lamellipodia mediate the heterogeneity of central olfactory ensheathing cell interactions. Cellular and Molecular Life Sciences, 2010, 67, 1735-1750.	2.4	84
30	The cell surface carbohydrate blood group A regulates the selective fasciculation of regenerating accessory olfactory axons. Brain Research, 2008, 1203, 32-38.	1.1	9
31	Robo–Slit interactions regulate longitudinal axon pathfinding in the embryonic vertebrate brain. Developmental Biology, 2008, 313, 371-383.	0.9	42
32	Neogenin and RGMa Control Neural Tube Closure and Neuroepithelial Morphology by Regulating Cell Polarity. Journal of Neuroscience, 2008, 28, 12643-12653.	1.7	48
33	Caveolin-1 is required for lateral line neuromast and notochord development. Journal of Cell Science, 2007, 120, 2151-2161.	1.2	60
34	Neogenin: One receptor, many functions. International Journal of Biochemistry and Cell Biology, 2007, 39, 874-878.	1.2	87
35	The shape of the olfactory bulb influences axon targeting. Brain Research, 2007, 1169, 17-23.	1.1	2
36	Motile membrane protrusions regulate cell–cell adhesion and migration of olfactory ensheathing glia. Glia, 2007, 55, 1708-1719.	2.5	87

#	Article	IF	CITATIONS
37	Knockdown of zebrafish crim1 results in a bent tail phenotype with defects in somite and vascular development. Mechanisms of Development, 2006, 123, 277-287.	1.7	23
38	Neogenin interacts with RGMa and Netrin-1 to guide axons within the embryonic vertebrate forebrain. Developmental Biology, 2006, 296, 485-498.	0.9	100
39	Genetic manipulation of blood group carbohydrates alters development and pathfinding of primary sensory axons of the olfactory systems. Developmental Biology, 2006, 298, 470-484.	0.9	20
40	The sorting behaviour of olfactory and vomeronasal axons during regeneration. Journal of Molecular Histology, 2006, 36, 427-436.	1.0	17
41	Implantation of a scaffold following bulbectomy induces laminar organization of regenerating olfactory axons. Brain Research, 2006, 1119, 58-64.	1.1	14
42	Septal organ of Grüneberg is part of the olfactory system. Journal of Comparative Neurology, 2006, 494, 834-844.	0.9	84
43	Suppression and Overexpression of Adenosylhomocysteine Hydrolase-like Protein 1 (AHCYL1) Influences Zebrafish Embryo Development. Journal of Biological Chemistry, 2006, 281, 22471-22484.	1.6	22
44	BOC, brother of CDO, is a dorsoventral axon-guidance molecule in the embryonic vertebrate brain. Journal of Comparative Neurology, 2005, 485, 32-42.	0.9	37
45	Olfactory marker protein modulates primary olfactory axon overshooting in the olfactory bulb. Journal of Comparative Neurology, 2005, 488, 61-69.	0.9	30
46	A Model for Axon Navigation Based on Glycocodes in the Primary Olfactory System. Chemical Senses, 2005, 30, i123-i124.	1,1	6
47	Zebrafish as a model for caveolin-associated muscle disease; caveolin-3 is required for myofibril organization and muscle cell patterning. Human Molecular Genetics, 2005, 14, 1727-1743.	1.4	86
48	Expression and putative role of lactoseries carbohydrates present on NCAM in the rat primary olfactory pathway. Journal of Comparative Neurology, 2004, 475, 289-302.	0.9	35
49	Target tissue influences the peripheral trajectory of mouse primary sensory olfactory axons. Journal of Neurobiology, 2004, 61, 175-188.	3.7	11
50	Zebrafish as an experimental model: strategies for developmental and molecular neurobiology studies. Cytotechnology, 2003, 25, 1-6.	0.7	52
51	Identifying axon guidance defects in the embryonic zebrafish brain. Cytotechnology, 2003, 25, 33-37.	0.7	16
52	Sorting and convergence of primary olfactory axons are independent of the olfactory bulb. Journal of Comparative Neurology, 2003, 464, 131-140.	0.9	63
53	Axon Mis-targeting in the Olfactory Bulb During Regeneration of Olfactory Neuroepithelium. Chemical Senses, 2003, 28, 773-779.	1.1	37
54	Making developmental biology relevant to undergraduates in an era of economic rationalism in Australia. International Journal of Developmental Biology, 2003, 47, 105-15.	0.3	0

#	Article	IF	CITATIONS
55	Axon Navigation in the Mammalian Primary Olfactory Pathway: Where to Next?. Chemical Senses, 2002, 27, 245-260.	1.1	52
56	EphA receptors and ephrin-A ligands exhibit highly regulated spatial and temporal expression patterns in the developing olfactory system. Developmental Brain Research, 2002, 138, 1-14.	2.1	45
57	Laminar disorganisation of mitral cells in the olfactory bulb does not affect topographic targeting of primary olfactory axons. Brain Research, 2002, 932, 1-9.	1.1	8
58	Expression of specific glycoconjugates in both primary and secondary olfactory pathways in BALB/C mice. Journal of Comparative Neurology, 2002, 443, 213-225.	0.9	7
59	Expression and role of Roundabout-1 in embryonicXenopus forebrain. Developmental Dynamics, 2002, 225, 22-34.	0.8	26
60	Heterogeneity in olfactory neurons in mouse revealed by differential expression of glycoconjugates. The Histochemical Journal, 2002, 34, 281-289.	0.6	9
61	Developmental biology in Australia and New Zealand. International Journal of Developmental Biology, 2002, 46, 341-51.	0.3	0
62	The emergence of the field of developmental biology in Australia. International Journal of Developmental Biology, 2002, 46, 353-6.	0.3	0
63	Development of axon pathways in the zebrafish central nervous system. International Journal of Developmental Biology, 2002, 46, 609-19.	0.3	36
64	Multiple axon guidance cues establish the olfactory topographic map: how do these cues interact?. International Journal of Developmental Biology, 2002, 46, 639-47.	0.3	34
65	Are Pioneer Axons Guided by Regulatory Gene Expression Domains in the Zebrafish Forebrain? High-Resolution Analysis of the Patterning of the Zebrafish Brain during Axon Tract Formation. Developmental Biology, 2001, 229, 271-286.	0.9	36
66	A zebrafish homologue of deleted in colorectal cancer (zdcc) is expressed in the first neuronal clusters of the developing brain. Mechanisms of Development, 2001, 109, 105-109.	1.7	23
67	Chemically and morphologically identifiable glomeruli in the rat olfactory bulb. Journal of Comparative Neurology, 2001, 436, 497-507.	0.9	31
68	Expression of glycoproteins in the vomeronasal organ reveals a novel spatiotemporal pattern of sensory neurone maturation. Journal of Neurobiology, 2001, 46, 113-125.	3.7	7
69	EphB2 and two of its ligands have dynamic protein expression patterns in the developing olfactory system. Developmental Brain Research, 2001, 126, 43-56.	2.1	33
70	Expression of EphA5 during development of the olfactory nerve pathway in rat. Journal of Comparative Neurology, 2000, 416, 540-550.	0.9	36
71	Dynamic spatiotemporal expression patterns of neurocan and phosphacan indicate diverse roles in the developing and adult mouse olfactory system. Journal of Comparative Neurology, 2000, 423, 99-111.	0.9	26
72	Primary olfactory axons form ectopic glomeruli in mice lacking p75NTR. Journal of Comparative Neurology, 2000, 428, 656-670.	0.9	29

#	Article	IF	CITATIONS
73	DCC Plays a Role in Navigation of Forebrain Axons across the Ventral Midbrain Commissure in Embryonic Xenopus. Developmental Biology, 2000, 217, 244-253.	0.9	16
74	The Extracellular Matrix Modulates Olfactory Neurite Outgrowth on Ensheathing Cells. Journal of Neuroscience, 1999, 19, 9890-9899.	1.7	114
75	Development of P2 Olfactory Glomeruli in P2-Internal Ribosome Entry Site-Tau-LacZ Transgenic Mice. Journal of Neuroscience, 1999, 19, 9856-9864.	1.7	151
76	Expression of galectin-1 in the olfactory nerve pathway of rat. Developmental Brain Research, 1999, 117, 171-178.	2.1	43
77	Role of acetylcholinesterase in the development of axon tracts within the embryonic vertebrate brain. International Journal of Developmental Neuroscience, 1999, 17, 787-793.	0.7	26
78	Molecular Development of the Olfactory Nerve Pathway. Annals of the New York Academy of Sciences, 1998, 855, 76-82.	1.8	18
79	Chondroitin Sulfates Modulate Axon Guidance in EmbryonicXenopusBrain. Developmental Biology, 1998, 202, 235-243.	0.9	35
80	Role of Galectin-1 in the Olfactory Nervous System Trends in Glycoscience and Glycotechnology, 1997, 9, 41-45.	0.0	4
81	Role of Galectin-1 in the Developing Mouse Olfactory System. Developmental Biology, 1996, 179, 274-287.	0.9	182
82	Light-microscopic immunolocalization of fibroblast growth factor-1 and -2 in adult rat kidney. Cell and Tissue Research, 1996, 285, 179-187.	1.5	19
83	Immunolocalization of fibroblast growth factor-1 and -2 in the embryonic rat kidney. Nephrology, 1996, 2, 167-174.	0.7	5
84	Lineage specification of neuronal precursors in the mouse spinal cord Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 10079-10083.	3.3	13
85	Identification of cells expressing galectin-1, a galactose-binding receptor, in the rat olfactory system. Journal of Comparative Neurology, 1995, 357, 513-523.	0.9	49
86	Expression of transforming growth factor-? type II receptor mRNA in embryonic and adult rat kidney. Nephrology, 1995, 1, 547-553.	0.7	4
87	Expression of the amyloid protein precursor of Alzheimer's disease in the developing rat olfactory system. Developmental Brain Research, 1995, 88, 87-95.	2.1	48
88	Distinct subsets of sensory olfactory neurons in mouse: Possible role in the formation of the mosaic olfactory projection. Journal of Comparative Neurology, 1993, 335, 355-368.	0.9	76
89	Lens structures exist transiently in development of transgenic mice carrying an α-crystallin-diphtheria toxin hybrid gene. Experimental Eye Research, 1992, 55, 357-367.	1.2	15
90	Delineation of olfactory pathways in the frog nervous system by unique glycoconjugates and N-CAM glycoforms. Neuron, 1991, 6, 381-396.	3.8	84

#	Article	IF	CITATIONS
91	Olfactory neurons express a unique glycosylated form of the neural cell adhesion molecule (N-CAM) Journal of Cell Biology, 1990, 110, 1729-1743.	2.3	97
92	Immunochemical markers for the frog olfactory neuroepithelium. Developmental Brain Research, 1990, 57, 103-117.	2.1	22
93	The plant lectin soybean agglutinin binds to the soma, axon and central terminals of a subpopulation of small-diameter primary sensory neurons in the rat and cat. Neuroscience, 1989, 31, 683-695.	1.1	49
94	Soybean agglutinin binds to a subpopulation of primary sensory neurones in the cat. Neuroscience Letters, 1988, 86, 257-262.	1.0	32
95	Uptake and axonal transport of horseradish peroxidase isoenzymes by different neuronal types. Neuroscience, 1987, 22, 1135-1144.	1.1	5
96	Soybean agglutinin binding to the olfactory systems of the rat and mouse. Neuroscience Letters, 1986, 69, 131-136.	1.0	85
97	Selective binding of soybean agglutinin to the olfactory system of Xenopus. Neuroscience, 1986, 18, 507-515.	1.1	77
98	Endurance exercise does not modify nerve fibre morphology in the rat soleus nerve. Brain Research, 1984, 297, 137-144.	1.1	6
99	Is absence of evidence of pain ever evidence of absence?. SynthÃ^se, 0, , 1.	0.6	4