Shengjun Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2945678/publications.pdf

Version: 2024-02-01

		136885	71651
77	7,462 citations	32	76
papers	citations	h-index	g-index
79	79	79	9337
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	MOFs-derived MoS2/C3N4 composites with highly efficient charge separation for photocatalytic H2 evolution. Inorganica Chimica Acta, 2022, 533, 120787.	1.2	9
2	Photoinduced Rechargeable Lithium-Ion Battery. ACS Applied Materials & Samp; Interfaces, 2022, 14, 4071-4078.	4.0	37
3	Concentration-dependent multi-color humic acid-based carbon dots for luminescent polymer composite films. Journal of Materials Science, 2022, 57, 1069-1083.	1.7	9
4	Hollow heterostructure CoS/CdS photocatalysts with enhanced charge transfer for photocatalytic hydrogen production from seawater. International Journal of Hydrogen Energy, 2022, 47, 9220-9229.	3.8	44
5	Two-dimensional coordination polymers with high proton conductivity and ultrafast highly efficient molecular sieving constructed by the structural inductive effect. Dalton Transactions, 2022, 51, 5796-5800.	1.6	4
6	Photo-rechargeable lithium-ion battery: progress and prospects. Science Bulletin, 2022, 67, 1087-1089.	4.3	6
7	Metal-organic frameworks derived TiO2/carbon nitride heterojunction photocatalyst with efficient catalytic performance under visible light. Inorganica Chimica Acta, 2022, 536, 120918.	1.2	18
8	Reversible Ratiometric Electrochemiluminescence Biosensor Based on DNAzyme Regulated Resonance Energy Transfer for Myocardial miRNA Detection. Analytical Chemistry, 2022, 94, 7035-7040.	3.2	25
9	Fluorescence enhancement induced by sulfuric acid intercalation on melem-based polymer. Inorganic Chemistry Communication, 2022, 142, 109600.	1.8	O
10	MOF nanosheet-derived carbon-layer-coated CoP/g-C ₃ N ₄ photocatalysts with enhanced charge transfer for efficient photocatalytic H ₂ generation. CrystEngComm, 2022, 24, 5141-5148.	1.3	1
11	A Molecular Dynamics Study into Zeolitic Imidazolate Frameworks-Based Capacitive Deionization Electrodes for Mg ²⁺ Removal and Seawater Desalination., 2022,,.		O
12	Coal based carbon dots: Recent advances in synthesis, properties, and applications. Nano Select, 2021, 2, 1589-1604.	1.9	24
13	Stable Indium Pyridylcarboxylate Framework with Highly Selective Adsorption of Cationic Dyes and Effective Nitenpyram Detection. Inorganic Chemistry, 2021, 60, 5232-5239.	1.9	17
14	Zeolitic imidazolate frameworks as capacitive deionization electrodes for water desalination and Cr(VI) adsorption: A molecular simulation study. Applied Surface Science, 2021, 546, 149080.	3.1	27
15	Gramâ€Scale Synthesis of Porous Graphene via Printing Paper Pyrolysis as Supercapacitor Electrodes. Energy Technology, 2021, 9, 2001025.	1.8	4
16	A Multitargeted Electrochemiluminescent Biosensor Coupling DNAzyme with Cascading Amplification for Analyzing Myocardial miRNAs. Analytical Chemistry, 2021, 93, 7516-7522.	3.2	35
17	Molecular Surgery at Microporous MOF for Mesopore Generation and Renovation. Angewandte Chemie, 2021, 133, 14722-14729.	1.6	3
18	Molecular Surgery at Microporous MOF for Mesopore Generation and Renovation. Angewandte Chemie - International Edition, 2021, 60, 14601-14608.	7.2	48

#	Article	IF	CITATIONS
19	Efficient Photoâ€Thermoâ€Electric Conversion Using Polyoxovanadate in Ionic Liquid for Lowâ€Grade Heat Utilization. ChemSusChem, 2021, 14, 5434-5441.	3.6	6
20	Stimuli-responsive anisotropic actuation of melem-formaldehyde polymer. Materials Horizons, 2020, 7, 149-156.	6.4	13
21	Regulating the Coordination Environment of MOFâ€Templated Singleâ€Atom Nickel Electrocatalysts for Boosting CO ₂ Reduction. Angewandte Chemie - International Edition, 2020, 59, 2705-2709.	7.2	404
22	Regulating the Coordination Environment of MOFâ€Templated Singleâ€Atom Nickel Electrocatalysts for Boosting CO ₂ Reduction. Angewandte Chemie, 2020, 132, 2727-2731.	1.6	110
23	Dualâ€Function HKUSTâ€1: Templating and Catalyzing Formation of Graphitic Carbon Nitride Quantum Dots Under Mild Conditions. Angewandte Chemie - International Edition, 2020, 59, 21499-21504.	7.2	22
24	Dualâ€Function HKUSTâ€1: Templating and Catalyzing Formation of Graphitic Carbon Nitride Quantum Dots Under Mild Conditions. Angewandte Chemie, 2020, 132, 21683-21688.	1.6	6
25	A novel amorphous CoSx/NH2-MIL-125 composite for photocatalytic degradation of rhodamine B under visible light. Journal of Materials Science, 2020, 55, 16171-16183.	1.7	19
26	Hierarchically Porous Carbons Derived from Nonporous Coordination Polymers. ACS Applied Materials & Samp; Interfaces, 2020, 12, 25211-25220.	4.0	31
27	Field-portable ratiometric fluorescence imaging of dual-color label-free carbon dots for uranyl ions detection with cellphone-based optical platform. Chinese Chemical Letters, 2020, 31, 2925-2928.	4.8	39
28	Combustible ice mimicking behavior of hydrogen-bonded organic framework at ambient condition. Nature Communications, 2020, 11, 3124.	5.8	30
29	Design of metal-organic framework-based photocatalysts for hydrogen generation. Coordination Chemistry Reviews, 2020, 413, 213266.	9.5	106
30	Photo-assisted synthesis of inorganic polyoxovanadate. Dalton Transactions, 2020, 49, 9662-9667.	1.6	3
31	Efficient Solar Evaporation by [Ni(Phen) ₃][V ₁₄ O ₃₄ Cl]Cl Hybrid Semiconductor Confined in Mesoporous Glass. ChemSusChem, 2020, 13, 2945-2951.	3.6	11
32	Two-dimensional graphitic carbon nitride based membranes for separation. Science Bulletin, 2019, 64, 1385-1387.	4.3	4
33	Graphite phase carbon nitride based membrane for selective permeation. Nature Communications, 2019, 10, 2500.	5.8	71
34	Hyperstable chromium(<scp>iii</scp>)/manganese(<scp>ii</scp>) bimetallic wheel clusters with visible photoactivity. Dalton Transactions, 2019, 48, 10669-10675.	1.6	9
35	Imaging-based fluorescent sensing platform for quantitative monitoring and visualizing of fluoride ions with dual-emission quantum dots hybrid. Biosensors and Bioelectronics, 2019, 128, 61-67.	5.3	50
36	Porous Liquid: A Stable ZIF-8 Colloid in Ionic Liquid with Permanent Porosity. Langmuir, 2018, 34, 3654-3660.	1.6	108

#	Article	IF	Citations
37	Highly Crystalline Carbon Nitride Nanosheets for Ultrahigh Photocatalytic Hydrogen Evolution. ChemPhotoChem, 2018, 2, 490-497.	1.5	15
38	Cascade covalent and coordination bond formation for Ti-based cage assembly: catalysis and coordination bifunctionality of TiCl4. Dalton Transactions, 2018, 47, 3239-3242.	1.6	2
39	Metal–organic frameworks (ZIF-67) as efficient cocatalysts for photocatalytic reduction of CO ₂ : the role of the morphology effect. Journal of Materials Chemistry A, 2018, 6, 4768-4775.	5.2	236
40	Green emission of indium oxide <i>via</i> hydrogen treatment. RSC Advances, 2018, 8, 11828-11833.	1.7	35
41	One-step synthesis of magnetic and porous Ni@MOF-74(Ni) composite. Microporous and Mesoporous Materials, 2018, 259, 178-183.	2.2	38
42	Exfoliating Polyoxometalateâ€Encapsulating Metalâ€Organic Framework into Twoâ€Dimensional Nanosheets for Superior Oxidative Desulfurization. ChemCatChem, 2018, 10, 5386-5390.	1.8	28
43	Conductive and Chiral Polymer-Modified Metal–Organic Framework for Enantioselective Adsorption and Sensing. ACS Applied Materials & Samp; Interfaces, 2018, 10, 26365-26371.	4.0	54
44	Co3O4 nanosheet-built hollow dodecahedrons via a two-step self-templated method and their multifunctional applications. Science China Materials, 2018, 61, 1575-1586.	3.5	20
45	Oneâ€Step Synthesis of Dicyanobenzeneâ€Derived Nitrogenâ€Doped Porous Carbon Monolayers: Porosity and Nearâ€infrared Photoactivity. ChemCatChem, 2017, 9, 4043-4048.	1.8	8
46	[Ti ₁₂ In ₆ O ₁₈ (OOCC ₆ H ₅) ₃₀]: a multifunctional hetero-polyoxotitanate nanocluster with high stability and visible photoactivity. Dalton Transactions, 2017, 46, 678-684.	1.6	31
47	Superficial Chiral Etching on Achiral Metal–Organic Framework for Enantioselective Sorption. ACS Applied Materials & Samp; Interfaces, 2017, 9, 32264-32269.	4.0	20
48	Hydrogen production with ultrahigh efficiency under visible light by graphene well-wrapped UiO-66-NH ₂ octahedrons. Journal of Materials Chemistry A, 2017, 5, 20136-20140.	5.2	68
49	A gigantic polyoxozirconate with visible photoactivity. Dalton Transactions, 2017, 46, 10185-10188.	1.6	10
50	Boosting selective oxidation of cyclohexane over a metal–organic framework by hydrophobicity engineering of pore walls. Chemical Communications, 2017, 53, 10026-10029.	2.2	71
51	Stable Heteropolyoxotitanate Nanocluster for Full Solar Spectrum Photocatalytic Hydrogen Evolution. Journal of Physical Chemistry C, 2017, 121, 18326-18332.	1.5	20
52	A general approach to functional metal oxide nanobelts: thermal decomposition of precursors and interface diffusion growth mechanism. CrystEngComm, 2014, 16, 952-958.	1.3	8
53	In situ loading of Ag nanocontacts onto silica nanospheres: a SERS platform for ultrasensitive detection. RSC Advances, 2014, 4, 2776-2782.	1.7	34
54	Controllable growth of a forest of silver nanowires and their field emission properties. CrystEngComm, 2014, 16, 8646.	1.3	9

#	Article	IF	CITATIONS
55	Controlled depositing of silver nanoparticles on flexible film and its application in ultrasensitive detection. RSC Advances, 2014, 4, 42358-42363.	1.7	34
56	Multi Variant Surface Mounted Metal–Organic Frameworks. Advanced Functional Materials, 2013, 23, 3790-3798.	7.8	67
57	Morphology control of silver nanostructures via a chemical redox process by mixed amine ligands. CrystEngComm, 2013, 15, 7564.	1.3	4
58	Metal–Organic Framework Thin Films: Crystallite Orientation Dependent Adsorption. Angewandte Chemie - International Edition, 2013, 52, 3402-3405.	7.2	89
59	Metal–organic framework-based devices: separation and sensors. Journal of Materials Chemistry, 2012, 22, 10094.	6.7	169
60	Enantiopure Metal–Organic Framework Thin Films: Oriented SURMOF Growth and Enantioselective Adsorption. Angewandte Chemie - International Edition, 2012, 51, 807-810.	7.2	189
61	Chemistry of SURMOFs: Layer-Selective Installation of Functional Groups and Post-synthetic Covalent Modification Probed by Fluorescence Microscopy. Journal of the American Chemical Society, 2011, 133, 1734-1737.	6.6	122
62	From Metal–Organic Framework to Nanoporous Carbon: Toward a Very High Surface Area and Hydrogen Uptake. Journal of the American Chemical Society, 2011, 133, 11854-11857.	6.6	1,071
63	Liquid-phase epitaxy of metal organic framework thin films. Science China Chemistry, 2011, 54, 1851-1866.	4.2	47
64	Ultrafine Gold Clusters Incorporated into a Metal–Organic Framework. Chemistry - A European Journal, 2011, 17, 78-81.	1.7	97
65	Converting cobalt oxide subunits in cobalt metal-organic framework into agglomerated Co3O4 nanoparticles as an electrode material for lithium ion battery. Journal of Power Sources, 2010, 195, 857-861.	4.0	223
66	Metal–organic framework (MOF) as a template for syntheses of nanoporous carbons as electrode materials for supercapacitor. Carbon, 2010, 48, 456-463.	5.4	621
67	Rational Assembly of d ¹⁰ Metalâ^'Organic Frameworks with Helical Nanochannels Based on Flexible V-Shaped Ligand. Crystal Growth and Design, 2010, 10, 806-811.	1.4	88
68	Au@ZIF-8: CO Oxidation over Gold Nanoparticles Deposited to Metalâ^'Organic Framework. Journal of the American Chemical Society, 2009, 131, 11302-11303.	6.6	772
69	Metal–Organic Framework (MOF) as a Precursor for Synthesis of Platinum Supporting Zinc Oxide Nanoparticles. Bulletin of the Chemical Society of Japan, 2009, 82, 1052-1054.	2.0	34
70	catena-Poly[[diaquazinc(II)]-μ-trans-4,4′-diazenediyldibenzoato-κ4O,O′:O′′,O′′′]. Acta Cry Section E: Structure Reports Online, 2009, 65, m509-m509.	stallograp	hica
71	Microporous coordination polymers of cobalt(II) and manganese(II) 2,6-naphthalenedicarboxylate: preparations, structures and gas sorptive and magnetic properties. Microporous and Mesoporous Materials, 2008, 111, 470-477.	2.2	61
72	Metal-Organic Framework as a Template for Porous Carbon Synthesis. Journal of the American Chemical Society, 2008, 130, 5390-5391.	6.6	1,623

Shengjun Liu

#	Article	IF	CITATIONS
73	Self-Assembly of Two Chiral Supramolecules with Three-Dimensional Porous Host Frameworks:Â (î"){[FeII(phen)3][FeIIINa(C2O4)3]}nand Its Enantiomer. Inorganic Chemistry, 2007, 46, 5823-5825.	1.9	31
74	Self-assembly of chiral porous supra-molecular complex with three-dimensional nano-cage structure filled with guest molecule. Inorganic Chemistry Communication, 2006, 9, 403-406.	1.8	6
75	Synthesis, crystal structure and NMR of [Na(DB18C6)(CH3CN)]3[α-PW12O40]. Polyhedron, 2005, 24, 2889-2893.	1.0	11
76	Synthesis, crystal structure and NMR of [Na(DB18C6)(CH3CN)]3[α-AsM12O40] (M=Mo/W). Inorganic Chemistry Communication, 2005, 8, 1133-1136.	1.8	6
77	Soluble Hybrid Ionic Semiconductor and Its Photovoltaic Effect in Solution. ACS Applied Materials & Effect in Solution. ACS Applied Materials	4.0	2