
M Teresa Montero Barrientos

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2945060/publications.pdf

Version: 2024-02-01

M Teresa Montero

#	Article	IF	CITATIONS
1	Engineering and development of model lipid membranes mimicking the HeLa cell membrane. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 630, 127663.	4.7	5
2	Characterization of monolayers and liposomes that mimic lipid composition of HeLa cells. Colloids and Surfaces B: Biointerfaces, 2020, 196, 111288.	5.0	5
3	Planar lipid bilayers formed from thermodynamically-optimized liposomes as new featured carriers for drug delivery systems through human skin. International Journal of Pharmaceutics, 2019, 563, 1-8.	5.2	5
4	Effect of cholesterol on monolayer structure of different acyl chained phospholipids. Colloids and Surfaces B: Biointerfaces, 2019, 174, 374-383.	5.0	14
5	Mapping phase diagrams of supported lipid bilayers by atomic force microscopy. Microscopy Research and Technique, 2017, 80, 4-10.	2.2	3
6	Unspecific membrane protein-lipid recognition: combination of AFM imaging, force spectroscopy, DSC and FRET measurements. Journal of Molecular Recognition, 2015, 28, 679-686.	2.1	5
7	Enhanced topical delivery of hyaluronic acid encapsulated in liposomes: A surface-dependent phenomenon. Colloids and Surfaces B: Biointerfaces, 2015, 134, 31-39.	5.0	19
8	Combined force spectroscopy, AFM and calorimetric studies to reveal the nanostructural organization of biomimetic membranes. Chemistry and Physics of Lipids, 2014, 183, 208-217.	3.2	6
9	Improving ex vivo skin permeation of non-steroidal anti-inflammatory drugs: Enhancing extemporaneous transformation of liposomes into planar lipid bilayers. International Journal of Pharmaceutics, 2014, 461, 427-436.	5.2	16
10	Effect of lactose permease presence on the structure and nanomechanics of two-component supported lipid bilayers. Biochimica Et Biophysica Acta - Biomembranes, 2014, 1838, 842-852.	2.6	13
11	Phospholipid–Lactose Permease Interaction As Reported by a Head-Labeled Pyrene Phosphatidylethanolamine: A FRET Study. Journal of Physical Chemistry B, 2013, 117, 6741-6748.	2.6	6
12	Membrane Protein–Lipid Selectivity: Enhancing Sensitivity for Modeling FRET Data. Journal of Physical Chemistry B, 2012, 116, 2438-2445.	2.6	12
13	Phosphatidylethanolamine–Lactose Permease Interaction: A Comparative Study Based on FRET. Journal of Physical Chemistry B, 2012, 116, 14023-14028.	2.6	7
14	Miscibility Behavior and Nanostructure of Monolayers of the Main Phospholipids of Escherichia coli Inner Membrane. Langmuir, 2012, 28, 701-706.	3.5	20
15	Acyl Chain Differences in Phosphatidylethanolamine Determine Domain Formation and LacY Distribution in Biomimetic Model Membranes. Journal of Physical Chemistry B, 2011, 115, 12778-12784.	2.6	26
16	Evidence of phosphatidylethanolamine and phosphatidylglycerol presence at the annular region of lactose permease of Escherichia coli. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 291-296.	2.6	22
17	Preferential insertion of lactose permease in phospholipid domains: AFM observations. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1014-1019.	2.6	20
18	Lactose permease lipid selectivity using Förster resonance energy transfer. Biochimica Et Biophysica Acta - Biomembranes, 2010, 1798, 1707-1713.	2.6	17

M TERESA MONTERO

#	Article	IF	CITATIONS
19	Force Spectroscopy Study of Langmuirâ^'Blodgett Asymmetric Bilayers of Phosphatidylethanolamine and Phosphatidylglycerol. Journal of Physical Chemistry B, 2010, 114, 3543-3549.	2.6	33
20	Calcium-Induced Formation of Subdomains in Phosphatidylethanolamineâ^'Phosphatidylglycerol Bilayers: A Combined DSC, 31P NMR, and AFM Study. Journal of Physical Chemistry B, 2009, 113, 4648-4655.	2.6	31
21	Phase Changes in Supported Planar Bilayers of 1-Palmitoyl-2-oleoyl- <i>sn</i> -glycero-3-phosphoethanolamine. Journal of Physical Chemistry B, 2008, 112, 10181-10187.	2.6	17
22	Supported planar bilayers from hexagonal phases. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 100-106.	2.6	20
23	Atomic force microscopy and force spectroscopy study of Langmuir–Blodgett films formed by heteroacid phospholipids of biological interest. Biochimica Et Biophysica Acta - Biomembranes, 2007, 1768, 1190-1198.	2.6	38
24	Unveiling a Complex Phase Transition in Monolayers of a Phospholipid from the Annular Region of Transmembrane Proteins. Journal of Physical Chemistry B, 2007, 111, 10946-10951.	2.6	22
25	Specific Adsorption of Cytochromecon Cardiolipinâ^ Glycerophospholipid Monolayers and Bilayers. Langmuir, 2007, 23, 5651-5656.	3.5	21
26	Atomic force microscopy characterization of supported planar bilayers that mimic the mitochondrial inner membrane. Journal of Molecular Recognition, 2007, 20, 546-553.	2.1	28
27	Thermal response of domains in cardiolipin content bilayers. Ultramicroscopy, 2007, 107, 943-947.	1.9	24
28	Monitoring Pyrene Excimers in Lactose Permease Liposomes: Revealing the Presence of Phosphatidylglycerol in Proximity to an Integral Membrane Protein. Journal of Fluorescence, 2007, 17, 649-654.	2.5	5
29	Interfacial Membrane Effects of Fluoroquinolones as Revealed by a Combination of Fluorescence Binding Experiments and Atomic Force Microscopy Observations. Langmuir, 2006, 22, 7574-7578.	3.5	18
30	Thermodynamic and structural study of the main phospholipid components comprising the mitochondrial inner membrane. Biochimica Et Biophysica Acta - Biomembranes, 2006, 1758, 213-221.	2.6	57
31	Preliminary atomic force microscopy study of two-dimensional crystals of lactose permease from Escherichia coli. Biophysical Chemistry, 2006, 119, 78-83.	2.8	15
32	Effects of lactose permease of Escherichia coli on the anisotropy and electrostatic surface potential of liposomes. Biophysical Chemistry, 2006, 119, 101-105.	2.8	18
33	Surface planar bilayers of phospholipids used in protein membrane reconstitution: An atomic force microscopy study. Colloids and Surfaces B: Biointerfaces, 2006, 47, 102-106.	5.0	28
34	Surface thermodynamics study of monolayers formed with heteroacid phospholipids of biological interest. Colloids and Surfaces B: Biointerfaces, 2005, 41, 233-238.	5.0	26
35	Surface thermodynamic properties of monolayers versus reconstitution of a membrane protein in solid-supported bilayers. Colloids and Surfaces B: Biointerfaces, 2005, 44, 93-98.	5.0	7
36	Atomic force microscopy study of Escherichia coli lactose permease proteolipid sheets. Biosensors and Bioelectronics, 2005, 20, 1843-1846.	10.1	13

M TERESA MONTERO

#	Article	IF	CITATIONS
37	Effects of Lactose Permease on the Phospholipid Environment in Which It Is Reconstituted:Â A Fluorescence and Atomic Force Microscopy Study. Langmuir, 2005, 21, 4642-4647.	3.5	23
38	Preliminary studies of the 2D crystallization of Omp1 of Serratia marcescens: observation by atomic force microscopy in native membranes environment and reconstituted in proteolipid sheets. Biophysical Chemistry, 2004, 111, 1-7.	2.8	8
39	Influence of the cell wall on ciprofloxacin susceptibility in selected wild-type Gram-negative and Gram-positive bacteria. International Journal of Antimicrobial Agents, 2004, 23, 627-630.	2.5	26
40	Does ciprofloxacin interact with neutral bilayers? An aspect related to its antimicrobial activity. International Journal of Pharmaceutics, 2003, 252, 149-157.	5.2	28
41	Effects of Ciprofloxacin onEscherichiacoliLipid Bilayers:Â An Atomic Force Microscopy Study. Langmuir, 2003, 19, 6922-6927.	3.5	29
42	Interaction of 6-Fluoroquinolones with Dipalmitoylphosphatidylcholine Monolayers and Liposomes. Langmuir, 2002, 18, 9177-9182.	3.5	49
43	Fluoroquinoloneâ^'Biomembrane Interaction at the DPPC/PG Lipidâ^'Bilayer Interface. Langmuir, 2002, 18, 3288-3292.	3.5	25
44	Location and Nature of the Surface Membrane Binding Site of Ciprofloxacin:Â A Fluorescence Study. Langmuir, 2001, 17, 1009-1014.	3.5	25
45	Determination of the partition coefficients of a homologous series of ciprofloxacin: influence of the N-4 piperazinyl alkylation on the antimicrobial activity. International Journal of Pharmaceutics, 2001, 220, 53-62.	5.2	47