Juan Creus

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2944604/publications.pdf Version: 2024-02-01

LUAN CDEUS

#	Article	IF	CITATIONS
1	Grain size and grain-boundary effects on diffusion and trapping of hydrogen in pure nickel. Acta Materialia, 2012, 60, 6814-6828.	7.9	331
2	Porosity evaluation of protective coatings onto steel, through electrochemical techniques. Surface and Coatings Technology, 2000, 130, 224-232.	4.8	323
3	Study of the hydrogen diffusion and segregation into Fe–C–Mo martensitic HSLA steel using electrochemical permeation test. Journal of Physics and Chemistry of Solids, 2010, 71, 1467-1479.	4.0	152
4	Cathodic electrodeposition of cerium-based oxides on carbon steel from concentrated cerium nitrate solutions. Materials Chemistry and Physics, 2009, 113, 650-657.	4.0	138
5	The diffusion and trapping of hydrogen along the grain boundaries in polycrystalline nickel. Scripta Materialia, 2012, 66, 37-40.	5.2	123
6	Improvement of the corrosion resistance of CrN coated steel by an interlayer. Surface and Coatings Technology, 1998, 107, 183-190.	4.8	97
7	Synthesis and characterisation of thin cerium oxide coatings elaborated by cathodic electrolytic deposition on steel substrate. Surface and Coatings Technology, 2006, 200, 4636-4645.	4.8	92
8	Hydrogen trapping in martensitic steel investigated using electrochemical permeation and thermal desorption spectroscopy. Scripta Materialia, 2011, 65, 859-862.	5.2	91
9	Surface study of cerium oxide based coatings obtained by cathodic electrodeposition on zinc. Applied Surface Science, 2011, 257, 6202-6207.	6.1	82
10	Effects of grain orientation on the Hall–Petch relationship in electrodeposited nickel with nanocrystalline grains. Scripta Materialia, 2010, 62, 403-406.	5.2	81
11	Hydrogen solubility, diffusivity and trapping in a tempered Fe–C–Cr martensitic steel under various mechanical stress states. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 534, 384-393.	5.6	75
12	Localised corrosion of carbon steel in NaHCO3/NaCl electrolytes: role of Fe(II)-containing compounds. Corrosion Science, 2006, 48, 709-726.	6.6	68
13	Corrosion behaviour of amorphous Al–Cr and Al–Cr–(N) coatings deposited by dc magnetron sputtering on mild steel substrate. Thin Solid Films, 2004, 466, 1-9.	1.8	57
14	Morphological and structural characterisation of electrodeposited Zn–Mn alloys from acidic chloride bath. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2006, 430, 165-171.	5.6	57
15	Electrodeposition of Zn–Mn alloys on steel from acidic Zn–Mn chloride solutions. Thin Solid Films, 2003, 424, 171-178.	1.8	55
16	Electrodeposition of Zn–Mn alloys on steel using an alkaline pyrophosphate-based electrolytic bath. Surface and Coatings Technology, 2005, 200, 2137-2145.	4.8	55
17	Characterization of electrodeposited nickel coatings from sulphamate electrolyte without additive. Materials Characterization, 2011, 62, 164-173.	4.4	52
18	The effects of dislocation patterns on the dissolution process of polycrystalline nickel. Acta Materialia, 2006, 54, 2157-2167.	7.9	51

#	Article	IF	CITATIONS
19	Consequences of plastic strain on the dissolution process of polycrystalline nickel in H2SO4 solution. Scripta Materialia, 2004, 51, 869-873.	5.2	43
20	Influence of metallurgical parameters on the electrochemical behavior of electrodeposited Ni and Ni–W nanocrystalline alloys. Applied Surface Science, 2016, 370, 149-159.	6.1	43
21	Biomolecules as a sustainable protection against corrosion of reinforced carbon steel in concrete. Journal of Cleaner Production, 2016, 112, 666-671.	9.3	42
22	The role of plasticity and hydrogen flux in the fracture of a tempered martensitic steel: A new design of mechanical test until fracture to separate the influence of mobile from deeply trapped hydrogen. Acta Materialia, 2020, 186, 133-148.	7.9	41
23	Ageing of polyethylene at raised temperature in contact with chlorinated sanitary hot water. Part I – Chemical aspects. Polymer Degradation and Stability, 2012, 97, 149-157.	5.8	38
24	Consequence of the diffusive hydrogen contents on tensile properties of martensitic steel during the desorption at room temperature. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 598, 420-428.	5.6	37
25	Electrodeposition of Zn–Mn alloys in acidic and alkaline baths. Influence of additives on the morphological and structural properties. Journal of Applied Electrochemistry, 2005, 35, 1133-1139.	2.9	36
26	Influence of the plastic strain on the hydrogen evolution reaction on polycrystalline nickel electrodes in H2S04. Electrochimica Acta, 2006, 51, 4716-4727.	5.2	35
27	Influence of metallurgical states on the corrosion behaviour of Al–Zn PVD coatings in saline solution. Corrosion Science, 2013, 74, 240-249.	6.6	32
28	Influence of deposition parameters on microstructure and contamination of electrodeposited nickel coatings from additive-free sulphamate bath. Surface and Coatings Technology, 2012, 206, 4394-4402.	4.8	31
29	The influence of hydrostatic stress states on the hydrogen solubility in martensitic steels. Scripta Materialia, 2014, 84-85, 23-26.	5.2	28
30	Corrosion behaviour of magnetron-sputtered Al1â^x–Mnx coatings in neutral saline solution. Corrosion Science, 2010, 52, 3615-3623.	6.6	26
31	Characterization of thin solid films containing yttrium formed by electrogeneration of base for high temperature corrosion applications. Surface and Coatings Technology, 2004, 185, 275-282.	4.8	24
32	Marine corrosion resistance of CeO2/Mg(OH)2 mixed coating on a low alloyed steel. Surface and Coatings Technology, 2019, 372, 410-421.	4.8	24
33	Corrosion behaviour of Al/Ti coating elaborated by cathodic arc PVD process onto mild steel substrate. Thin Solid Films, 1999, 346, 150-154.	1.8	23
34	Mechanical and corrosion properties of dc magnetron sputtered Al/Cr multilayers. Surface and Coatings Technology, 2008, 202, 4047-4055.	4.8	23
35	Nanostructured aluminium based coatings deposited by electron-beam evaporative PVD. Thin Solid Films, 2009, 518, 1575-1580.	1.8	22
36	Impact of chlorinated disinfection on copper corrosion in hot water systems. Applied Surface Science, 2014, 314, 686-696.	6.1	21

#	ARTICLE	IF	CITATIONS
37	Corrosion behaviour of dc magnetron sputtered Fe1â^'xMgx alloy films in 3wt% NaCl solution. Corrosion Science, 2007, 49, 4276-4295.	6.6	20
38	Reactivity classification in saline solution of magnetron sputtered or EBPVD pure metallic, nitride and Al-based alloy coatings. Corrosion Science, 2012, 57, 162-173.	6.6	20
39	Corrosion behavior in artificial seawater of thermal-sprayed WC-CoCr coatings on mild steel by electrochemical impedance spectroscopy. Journal of Solid State Electrochemistry, 2012, 16, 633-648.	2.5	20
40	Electrodeposition of zinc–ceria nanocomposite coatings in alkaline bath. Journal of Solid State Electrochemistry, 2014, 18, 223-233.	2.5	20
41	The influence of biosurfactant adsorption on the physicochemical behaviour of carbon steel surfaces using contact angle measurements and X-ray photoelectron spectroscopy. Applied Surface Science, 2015, 351, 1174-1183.	6.1	19
42	Corrosion behaviour of TiN and CrN coatings produced by cathodic arc PVD process on mild steel substrate. Surface Engineering, 1998, 14, 432-436.	2.2	18
43	Influence of plastic strain on the hydrogen evolution reaction on nickel (100) single crystal surfaces to improve hydrogen embrittlement. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2013, 578, 24-34.	5.6	17
44	Computational analysis of geometrical factors affecting experimental data extracted from hydrogen permeation tests: III – Comparison with experimental results from the literature. International Journal of Hydrogen Energy, 2014, 39, 1145-1155.	7.1	17
45	Comparison of the intrinsic properties of EBPVD Al–Ti and Al–Mg coatings. Materials Chemistry and Physics, 2012, 132, 154-161.	4.0	16
46	The effect of tungsten addition on metallurgical state and solute content in nanocrystalline electrodeposited nickel. Journal of Alloys and Compounds, 2014, 609, 296-301.	5.5	14
47	Thermodynamic parameters evolution versus plastic strain during HER on nickel in sulphuric acid. Electrochimica Acta, 2007, 52, 4004-4014.	5.2	13
48	Controlled stripping of aluminide coatings on nickel superalloys through electrolytic techniques. Journal of Applied Electrochemistry, 2008, 38, 817-825.	2.9	13
49	On the implication of solute contents and grain boundaries on the Hall-Petch relationship of nanocrystalline Ni-W alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 678, 204-214.	5.6	13
50	Galvanic corrosion behaviour of mild steel, Al, and Ti in 3%NaCl solution: Application to PVD coatings on steel substrate. Surface Engineering, 1997, 13, 415-419.	2.2	11
51	A comparison between the microstructure and the functional properties of NiW coatings produced by magnetron sputtering and electrodeposition. Materials Chemistry and Physics, 2022, 276, 125332.	4.0	11
52	Diffusion of a Corroding Electrolyte through Defective Electroplated Ceria Based Coatings. Defect and Diffusion Forum, 0, 289-292, 235-242.	0.4	10
53	Zn–Fe alloy electrodeposition from chloride bath: Influence of deposition parameters on coatings morphology and structure. Materials and Corrosion - Werkstoffe Und Korrosion, 2013, 64, 328-334.	1.5	10

54 On the Implication of Hydrogen on Inter-granular Fracture. , 2014, 3, 2030-2034.

10

#	Article	IF	CITATIONS
55	Optimization of the morphology, structure and properties of high iron content Zn–Fe coatings by pulse electrodeposition. Materials Chemistry and Physics, 2021, 263, 124366.	4.0	10
56	Electrochemical behavior of Ni W alloys obtained by magnetron sputtering. Surface and Coatings Technology, 2018, 352, 581-590.	4.8	9
57	Incorporation of silica nanocontainers and its impact on a waterborne polyurethane coating. Materials and Corrosion - Werkstoffe Und Korrosion, 2019, 70, 1884-1899.	1.5	9
58	Rhamnolipids as an eco-friendly corrosion inhibitor of rebars in simulated concrete pore solution: evaluation of conditioning and addition methods. Corrosion Engineering Science and Technology, 2020, 55, 91-102.	1.4	9
59	Bifunctional TiO2/AlZr Thin Films on Steel Substrate Combining Corrosion Resistance and Photocatalytic Properties. Coatings, 2019, 9, 564.	2.6	8
60	Enhancement of Mechanical Properties and Corrosion Resistance of HVOF-Sprayed NiCrBSi Coatings Through Mechanical Attrition Treatment (SMAT). Journal of Thermal Spray Technology, 2020, 29, 2065-2079.	3.1	8
61	Role of Ceria Nanoparticles on the Electrodeposited Zinc Coating's Growth: Interest of a TEM-Scale Investigation. ECS Electrochemistry Letters, 2014, 3, D33-D35.	1.9	7
62	Corrosion behaviour in saline solution of pulsedâ€electrodeposited zincâ€nickelâ€ceria nanocomposite coatings. Materials and Corrosion - Werkstoffe Und Korrosion, 2017, 68, 1129-1142.	1.5	7
63	The Influence of Hydrogen Flux on Crack Initiation in Martensitic Steels. , 2014, 3, 2024-2029.		6
64	Al-Ti-W alloys deposited by magnetron sputtering: Effective barrier to prevent steel hydrogen embrittlement. Applied Surface Science, 2021, 567, 150786.	6.1	6
65	Study of Ce(III) as a potential corrosion inhibitor of Zn-Fe sacrificial coatings electrodeposited on steel. Corrosion Science, 2022, 200, 110249.	6.6	6
66	Relationship Between Microstructure and Marine Corrosion Resistance of Martensitic Stainless Steels: A Multiscale Approach. Journal of Materials Engineering and Performance, 2019, 28, 3785-3802.	2.5	4
67	Caractérisation de revêtements électrodéposés de zinc-nickel. Materiaux Et Techniques, 1997, 85, 33	-380.9	4
68	Impact of coherent and incoherent twin boundaries on the microhardness of annealed nanocrystalline Ni–W alloys. Philosophical Magazine Letters, 2017, 97, 399-407.	1.2	2
69	Synthesis of Zn-Ceria Nanocomposite Coatings from Particle-Free Aqueous Bath in a one Electrodeposition Step Process. Colloids and Interface Science Communications, 2018, 25, 31-35.	4.1	2
70	Stress Corrosion Cracking. Between the Corrosion Defect and the Long Crack: the Phase of the Initiation of the Cracks. , 2019, , 287-312.		2
71	Improvement of the corrosion behavior of aluminum alloy 6061-T6 with yttrium and lanthanum conversion coatings. Materiali in Tehnologije, 2018, 52, 329-334.	0.5	2
72	New approach using fluorescent nanosensors for filiform corrosion inhibition. Materials Letters, 2022, 318, 132240.	2.6	2

#	Article	IF	CITATIONS
73	Dislocations effect on kinetic of passivation of polycrystalline nickel in H2SO4 medium. , 2006, , 519-524.		1
74	Microstructural investigation of nickel deposits obtained by pulsed current. Journal of the Indian Chemical Society, 2022, 99, 100331.	2.8	1
75	extracted from hydrogen permeation test: I – Consequences of trapping―[Int J Hydrogen Energy 36 (2011) 12644–12652] and "ll – Consequences of trapping and an oxide layer―[Int J Hydrogen Energy 37 (2012) 13574–13582], "Corrigenda―to both [Int J Hydrogen Energy 39 (2014) 2430], and on "lll – Comparison with experimental results from the literature―[Int I Hydrogen Energy 39 (2014) 1145–1155]	7.1	0
76	with acceGeneralized. International Journal of Hydrogen Energy, 2014, 39, 19851-19852. Elaboration and microstructural characterization of calcareous/ceria based composite on zinc substrate. Protection of Metals and Physical Chemistry of Surfaces, 2016, 52, 894-899.	1.1	0
77	Influence d'un état mécanique sur la réactivité de surface en milieux aqueux des métaux c.f.c , 2009,	,.	Ο
78	Élaboration par électrodéposition en régime impulsionnel de revêtements de zinc sur acier. Materiaux Et Techniques, 2009, 97, 389-396.	0.9	0
79	Improvement of the corrosion resistance of electrodeposited Zn-Fe by sol-gel conversion films. Journal of Electrochemical Science and Engineering, 0, , .	3.5	0