Sara Abalde-Cela

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/294458/publications.pdf

Version: 2024-02-01

30

394421 477307 28 1,222 19 citations h-index papers

g-index 30 30 2253 docs citations times ranked citing authors all docs

29

#	Article	IF	CITATIONS
1	Surface-enhanced Raman scattering biomedical applications of plasmonic colloidal particles. Journal of the Royal Society Interface, 2010, 7, S435-50.	3.4	180
2	Loading of Exponentially Grown LBL Films with Silver Nanoparticles and Their Application to Generalized SERS Detection. Angewandte Chemie - International Edition, 2009, 48, 5326-5329.	13.8	117
3	Droplet microfluidics for the highly controlled synthesis of branched gold nanoparticles. Scientific Reports, 2018, 8, 2440.	3.3	108
4	Multifunctional Microgel Magnetic/Optical Traps for SERS Ultradetection. Langmuir, 2011, 27, 4520-4525.	3.5	96
5	Plasmonic Mesoporous Composites as Molecular Sieves for SERS Detection. Journal of Physical Chemistry Letters, 2013, 4, 2715-2720.	4.6	66
6	High-throughput detection of ethanol-producing cyanobacteria in a microdroplet platform. Journal of the Royal Society Interface, 2015, 12, 20150216.	3.4	66
7	Recent progress on colloidal metal nanoparticles as signal enhancers in nanosensing. Advances in Colloid and Interface Science, 2016, 233, 255-270.	14.7	56
8	Combination of Microfluidic Loop-Mediated Isothermal Amplification with Gold Nanoparticles for Rapid Detection of Salmonella spp. in Food Samples. Frontiers in Microbiology, 2017, 8, 2159.	3.5	48
9	Gold Nanostars for the Detection of Foodborne Pathogens via Surface-Enhanced Raman Scattering Combined with Microfluidics. ACS Applied Nano Materials, 2019, 2, 6081-6086.	5.0	47
10	Comparability of Raman Spectroscopic Configurations: A Large Scale Cross-Laboratory Study. Analytical Chemistry, 2020, 92, 15745-15756.	6.5	46
11	Label-Free Analysis and Sorting of Microalgae and Cyanobacteria in Microdroplets by Intrinsic Chlorophyll Fluorescence for the Identification of Fast Growing Strains. Analytical Chemistry, 2016, 88, 10445-10451.	6.5	42
12	Microdroplet fabrication of silver–agarose nanocomposite beads for SERS optical accumulation. Soft Matter, 2011, 7, 1321-1325.	2.7	39
13	Amplification-free SERS analysis of DNA mutation in cancer cells with single-base sensitivity. Nanoscale, 2019, 11, 7781-7789.	5.6	37
14	Surface-Enhanced Raman Scattering Spectroscopy and Microfluidics: Towards Ultrasensitive Label-Free Sensing. Biosensors, 2018, 8, 62.	4.7	36
15	SERS Chiral Recognition and Quantification of Enantiomers through Cyclodextrin Supramolecular Complexation. ChemPhysChem, 2011, 12, 1529-1535.	2.1	35
16	Multifuntional Gold Nanoparticles for the SERS Detection of Pathogens Combined with a LAMP–in–Microdroplets Approach. Materials, 2020, 13, 1934.	2.9	28
17	Real Time Dual-Channel Multiplex SERS Ultradetection. Journal of Physical Chemistry Letters, 2014, 5, 73-79.	4.6	23
18	HER2 Expression in Circulating Tumour Cells Isolated from Metastatic Breast Cancer Patients Using a Size-Based Microfluidic Device. Cancers, 2021, 13, 4446.	3.7	22

#	Article	IF	CITATIONS
19	Multiplexing Liquid Biopsy with Surfaceâ€Enhanced Raman Scattering Spectroscopy. Advanced Optical Materials, 2021, 9, 2001171.	7.3	17
20	The Significance of Circulating Tumour Cells in the Clinic. Acta Cytologica, 2019, 63, 466-478.	1.3	16
21	Microfluidics-Driven Fabrication of a Low Cost and Ultrasensitive SERS-Based Paper Biosensor. Applied Sciences (Switzerland), 2019, 9, 1387.	2.5	15
22	Applications of Microdroplet Technology for Algal Biotechnology. Current Biotechnology, 2016, 5, 109-117.	0.4	12
23	Discriminating Epithelial to Mesenchymal Transition Phenotypes in Circulating Tumor Cells Isolated from Advanced Gastrointestinal Cancer Patients. Cells, 2022, 11, 376.	4.1	12
24	A SERS-based 3D nanobiosensor: towards cell metabolite monitoring. Materials Advances, 2020, 1, 1613-1621.	5.4	10
25	Encapsulation of Nanostructures in a Dielectric Matrix Providing Optical Enhancement in Ultrathin Solar Cells. Solar Rrl, 2020, 4, 2000310.	5.8	10
26	Use of some cost-effective technologies for a routine clinical pathology laboratory. Lab on A Chip, 2021, 21, 4330-4351.	6.0	8
27	In Vitro Evaluation of Lipopolyplexes for Gene Transfection: Comparing 2D, 3D and Microdroplet-Enabled Cell Culture. Molecules, 2020, 25, 3277.	3.8	7
28	Advances in Microfluidics for the Implementation of Liquid Biopsy in Clinical Routine. Advances in Experimental Medicine and Biology, 2022, , 553-590.	1.6	2