Helmut Cölfen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2944576/publications.pdf

Version: 2024-02-01

280 papers

25,194 citations

18887 64 h-index 154

g-index

298 all docs

298 docs citations

298 times ranked 20465 citing authors

#	Article	IF	CITATIONS
1	Cationic Coacervates: Novel Phosphate Ionic Reservoir for the Mineralization of Calcium Phosphates. ACS Biomaterials Science and Engineering, 2023, 9, 1791-1795.	2.6	8
2	Cross-Linking of Apatite–Gelatin Nanocomposites as the Basis for Dentine Replacement Materials. ACS Biomaterials Science and Engineering, 2023, 9, 1815-1822.	2.6	5
3	3D Binary Mesocrystals from Anisotropic Nanoparticles<0:p>. Angewandte Chemie, 2022, 134, e202112461.	1.6	O
4	3D Binary Mesocrystals from Anisotropic Nanoparticles. Angewandte Chemie - International Edition, 2022, 61, .	7.2	11
5	Self-association and gel formation during sedimentation of like-charged colloids. Materials Horizons, 2022, 9, 1216-1221.	6.4	2
6	Analysis of Magic-Size Clusters in Crude Reaction Mixtures Using Multiwavelength Analytical Ultracentrifugation. Journal of Physical Chemistry C, 2022, 126, 2642-2655.	1.5	2
7	A new opportunity for the preparation of PEEK-based bone implant materials: From SARA ATRP to photo-ATRP. Polymer, 2022, 242, 124587.	1.8	10
8	Influence of anisotropy on heterogeneous nucleation of gold nanorod assemblies. Faraday Discussions, 2022, 235, 132-147.	1.6	2
9	Mesocrystalline structure and mechanical properties of biogenic calcite from sea urchin spine. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 2022, 78, 356-358.	0.5	1
10	A Symmetryâ€Based Kinematic Theory for Nanocrystal Morphology Design. Angewandte Chemie - International Edition, 2022, 61, .	7.2	10
11	Titelbild: BinÃre 3Dâ€Mesokristalle aus anisotropen Nanopartikeln (Angew. Chem. 2/2022). Angewandte Chemie, 2022, 134, .	1.6	0
12	Synthesis of two-dimensional layered double hydroxides: a systematic overview. CrystEngComm, 2022, 24, 4639-4655.	1.3	14
13	Self-Assembly of Colloidal Nanocrystals into 3D Binary Mesocrystals. Accounts of Chemical Research, 2022, 55, 1599-1608.	7.6	17
14	Turning Seashell Waste into Electrically Conductive Particles. International Journal of Molecular Sciences, 2022, 23, 7256.	1.8	0
15	Crystal Nucleation and Growth of Inorganic Ionic Materials from Aqueous Solution: Selected Recent Developments, and Implications. Small, 2022, 18, .	5.2	28
16	Revision of the calibration experiment in asymmetrical flow field-flow fractionation. Journal of Chromatography A, 2021, 1635, 461631.	1.8	0
17	Ultracentrifugation Techniques for the Ordering of Nanoparticles. Nanomaterials, 2021, 11, 333.	1.9	21
18	Phase separation of binary mixtures induced by soft centrifugal fields. Physical Chemistry Chemical Physics, 2021, 23, 8261-8272.	1.3	9

#	Article	IF	CITATIONS
19	Synthesis of ultrathin metal oxide and hydroxide nanosheets using formamide in water at room temperature. CrystEngComm, 2021, 23, 3794-3801.	1.3	5
20	Role of Water in CaCO ₃ Biomineralization. Journal of the American Chemical Society, 2021, 143, 1758-1762.	6.6	28
21	Chirality communications between inorganic and organic compounds. SmartMat, 2021, 2, 17-32.	6.4	45
22	Biominerals: Formation, Function, Properties. Crystals, 2021, 11, 299.	1.0	3
23	Outside Back Cover: Volume 2 Issue 1. SmartMat, 2021, 2, ii.	6.4	0
24	Continuum Crystallization Model Derived from Pharmaceutical Crystallization Mechanisms. ACS Central Science, 2021, 7, 900-908.	5. 3	17
25	Assembly Control at a Low PÃ \otimes clet Number in Ultracentrifugation for Uniformly Sized Nanoparticles. Journal of Physical Chemistry C, 2021, 125, 8752-8758.	1.5	1
26	Modular Toolkit of Multifunctional Block Copoly(2â€oxazoline)s for the Synthesis of Nanoparticles. Chemistry - A European Journal, 2021, 27, 8283-8287.	1.7	6
27	Surface nanocrystallization of wood particles from biomass waste for regenerated isotropic wood with excellent properties. National Science Review, 2021, 8, nwab096.	4.6	0
28	Materialien: Immer wieder schÄumen und lĶsen. Nachrichten Aus Der Chemie, 2021, 69, 44-45.	0.0	0
29	Simple Determination of Gold Nanocrystal Dimensions by Analytical Ultracentrifugation via Surface Ligand-Solvent Density Matching. Nanomaterials, 2021, 11, 1427.	1.9	4
30	Mesocrystals from Platinum Nanocubes. Nanomaterials, 2021, 11, 2122.	1.9	6
31	Self-Assembled Faceted Mesocrystals: Advances in Optimization of Growth Conditions. Crystal Growth and Design, 2021, 21, 5490-5495.	1.4	10
32	Determination of Particle Size, Core and Shell Size Distributions of Core–Shell Particles by Analytical Ultracentrifugation. Particle and Particle Systems Characterization, 2021, 38, 2100079.	1.2	2
33	Local Lightâ€Controlled Generation of Calcium Carbonate and Barium Carbonate Biomorphs via Photochemical Stimulation. Chemistry - A European Journal, 2021, 27, 12521-12525.	1.7	3
34	Controlling Oriented Attachment of Gold Nanoparticles by Size and Shape. Journal of Physical Chemistry C, 2021, 125, 20343-20350.	1.5	3
35	Mineral plastic foams. Materials Horizons, 2021, 8, 1222-1229.	6.4	4
36	Environmentally Benign Formation of Nickel Hexacyanoferrate-Derived Mesoframes for Heterogeneous Catalysis. Nanomaterials, 2021, 11, 2756.	1.9	2

#	Article	IF	CITATIONS
37	Fluorescent Cadmium Chalcogenide Nanoclusters in Ubiquitin. Small Structures, 2021, 2, 2000127.	6.9	1
38	Bioinspired Compartmentalization Strategy for Coating Polymers with Self-Organized Prismatic Films. Chemistry of Materials, 2021, 33, 9240-9251.	3.2	7
39	Morphogenesis of Magnetite Mesocrystals: Interplay between Nanoparticle Morphology and Solvation Shell. Chemistry of Materials, 2021, 33, 9119-9130.	3.2	11
40	Visualizing Cholesterol Uptake by Selfâ€Assembling Rhodamine Bâ€Labeled Polymer Inside Living Cells via FLIMâ€FRET Microscopy. Macromolecular Bioscience, 2020, 20, 1900081.	2.1	4
41	Inorganic Porous Bulk Discs as a Matrix for Thin-Layer Chromatography and Translucent Hard Composite Materials. ACS Applied Materials & Samp; Interfaces, 2020, 12, 3727-3735.	4.0	1
42	On the Future Design of Bioâ€Inspired Polyetheretherketone Dental Implants. Macromolecular Bioscience, 2020, 20, e1900239.	2.1	48
43	Progress in Mesocrystal Formation. ACS Symposium Series, 2020, , 73-96.	0.5	6
44	Controlling Protein Nanocage Assembly with Hydrostatic Pressure. Journal of the American Chemical Society, 2020, 142, 20640-20650.	6.6	17
45	Tuning the properties of hydrogels made from poly(acrylic acid) and calcium salts. Physical Chemistry Chemical Physics, 2020, 22, 18631-18638.	1.3	22
46	Mineral self-organized structures in pre-biotic chemistry. Physics of Life Reviews, 2020, 34-35, 89-91.	1.5	1
47	Synthesis of nickel hexacyanoferrate nanocubes with tuneable dimensions <i>via</i> temperature-controlled Ni ²⁺ -citrate complexation. Chemical Communications, 2020, 56, 14439-14442.	2.2	5
48	Polyetheretherketone implant surface functionalization technologies and the need for a transparent quality evaluation system. Polymer International, 2020, 70, 1002.	1.6	3
49	Light-switchable anchors on magnetized biomorphic microcarriers. Journal of Materials Chemistry B, 2020, 8, 4831-4835.	2.9	4
50	Layering of bidisperse charged nanoparticles in sedimentation. Soft Matter, 2020, 16, 4718-4722.	1.2	2
51	Temperature-induced switchable magnetite nanoparticle superstructures. Materials Advances, 2020, 1, 10-13.	2.6	1
52	Nonclassical Recrystallization. Chemistry - A European Journal, 2020, 26, 15242-15248.	1.7	16
53	Formation of Nanoclusters in Gold Nucleation. Crystals, 2020, 10, 382.	1.0	5
54	Potentiometric Titration Method for the Determination of Solubility Limits and p <i>K</i> _a Values of Weak Organic Acids in Water. Analytical Chemistry, 2020, 92, 9511-9515.	3.2	10

#	Article	IF	CITATIONS
55	Enhancement of coercivity of self-assembled stacking of ferrimagnetic and antiferromagnetic nanocubes. Nanoscale, 2020, 12, 7792-7796.	2.8	9
56	Multifunctional Polymer-Free Mineral Plastic Adhesives Formed by Multiple Noncovalent Bonds. ACS Applied Materials & Interfaces, 2020, 12, 7403-7410.	4.0	9
57	Microscopic Analysis of Heterogeneous Nucleation of Nanoparticle Superstructures. Journal of Physical Chemistry A, 2020, 124, 5657-5663.	1.1	7
58	Nonclassical Nucleation and Crystallization. Crystals, 2020, 10, 61.	1.0	12
59	Functionalized Multiwalled CNTs in Classical and Nonclassical CaCO3 Crystallization. Nanomaterials, 2019, 9, 1169.	1.9	8
60	Frontispiece: Putting a New Spin on It: Gradient Centrifugation for Analytical and Preparative Applications. Chemistry - A European Journal, 2019, 25, .	1.7	0
61	Controlled Preparation of Nanoparticle Gradient Materials by Diffusion. Nanomaterials, 2019, 9, 988.	1.9	8
62	Symbiosis of Silica Biomorphs and Magnetite Mesocrystals. Advanced Functional Materials, 2019, 29, 1902047.	7.8	18
63	Bioâ€Inspired Synthesis of Hematite Mesocrystals by Using Xonotlite Nanowires as Growth Modifiers and Their Improved Oxygen Evolution Activity. ChemSusChem, 2019, 12, 3747-3752.	3.6	6
64	High-Resolution Analysis of Small Silver Clusters by Analytical Ultracentrifugation. Journal of Physical Chemistry Letters, 2019, 10, 6558-6564.	2.1	12
65	Magnetic Nanoparticle Chains in Gelatin Ferrogels: Bioinspiration from Magnetotactic Bacteria. Advanced Functional Materials, 2019, 29, 1905996.	7.8	23
66	Flüssige metastabile Vorstufen von Ibuprofen als Zwischenprodukt der Nukleation in wÃssriger Lösung. Angewandte Chemie, 2019, 131, 19279-19286.	1.6	12
67	Liquid Metastable Precursors of Ibuprofen as Aqueous Nucleation Intermediates. Angewandte Chemie - International Edition, 2019, 58, 19103-19109.	7.2	46
68	Synthesis of Fiber-like Monetite without Organic Additives and Its Transformation to Hydroxyapatite. Chemistry of Materials, 2019, 31, 1543-1551.	3.2	19
69	On Biomineralization: Enzymes Switch on Mesocrystal Assembly. ACS Central Science, 2019, 5, 357-364.	5.3	24
70	New Horizons of Nonclassical Crystallization. Journal of the American Chemical Society, 2019, 141, 10120-10136.	6.6	168
71	Binary Colloidal Nanoparticles with a Large Size Ratio in Analytical Ultracentrifugation. ChemPhysChem, 2019, 20, 1799-1803.	1.0	4
72	Magnetic field-assisted assembly of iron oxide mesocrystals: a matter of nanoparticle shape and magnetic anisotropy. Beilstein Journal of Nanotechnology, 2019, 10, 894-900.	1.5	17

#	Article	IF	Citations
73	Hybrid Biomimetic Materials from Silica/Carbonate Biomorphs. Crystals, 2019, 9, 157.	1.0	10
74	Practical Aspects of Multiwavelength Analytical Ultracentrifugation. Instruments, 2019, 3, 23.	0.8	3
75	Mineral plastic hydrogels from the cross-linking of polyacrylic acid and alkaline earth or transition metal ions. Chemical Communications, 2019, 55, 4913-4916.	2.2	37
76	Putting a New Spin on It: Gradient Centrifugation for Analytical and Preparative Applications. Chemistry - A European Journal, 2019, 25, 10026-10032.	1.7	8
77	Multifunctional Block Copolymers for Simultaneous Solubilization of Poorly Waterâ€Soluble Cholesterol and Hydroxyapatite Crystals. Advanced Functional Materials, 2019, 29, 1808331.	7.8	8
78	Development of a novel CaCO ₃ PILP based cementation method for quartz sand. CrystEngComm, 2019, 21, 2273-2280.	1.3	7
79	Non-stoichiometric hydrated magnesium-doped calcium carbonate precipitation in ethanol. Chemical Communications, 2019, 55, 12944-12947.	2.2	8
80	Addressing some of the technical challenges associated with liquid phase S/TEM studies of particle nucleation, growth and assembly. Micron, 2019, 118, 35-42.	1.1	24
81	Binary Colloidal Nanoparticle Concentration Gradients in a Centrifugal Field at High Concentration. Nano Letters, 2019, 19, 1136-1142.	4.5	13
82	Bioinspired multifunctional layered magnetic hybrid materials. Bioinspired, Biomimetic and Nanobiomaterials, 2019, 8, 28-46.	0.7	5
83	Kontrolle der Molmassenverteilung durch Polymerisation in der analytischen Ultrazentrifuge. Angewandte Chemie, 2018, 130, 8416-8419.	1.6	3
84	Mineral-Enhanced Polyacrylic Acid Hydrogel as an Oyster-Inspired Organic–Inorganic Hybrid Adhesive. ACS Applied Materials & Interfaces, 2018, 10, 10471-10479.	4.0	142
85	Control of Molar Mass Distribution by Polymerization in the Analytical Ultracentrifuge. Angewandte Chemie - International Edition, 2018, 57, 8284-8287.	7.2	19
86	Controlled Aqueous Synthesis of CdSe Quantum Dots using Double-Hydrophilic Block Copolymers as Stabilizers. Zeitschrift Fur Physikalische Chemie, 2018, 232, 1281-1293.	1.4	3
87	Seeded Mineralization Leads to Hierarchical CaCO ₃ Thin Coatings on Fibers for Oil/Water Separation Applications. Langmuir, 2018, 34, 2942-2951.	1.6	33
88	Optical glucose sensing using ethanolamine–polyborate complexes. Journal of Materials Chemistry B, 2018, 6, 816-823.	2.9	8
89	From Solute, Fluidic and Particulate Precursors to Complex Organizations of Matter. Chemical Record, 2018, 18, 1203-1221.	2.9	18
90	Advanced Multiwavelength Detection in Analytical Ultracentrifugation. Analytical Chemistry, 2018, 90, 1280-1291.	3.2	47

#	Article	IF	Citations
91	Innentitelbild: Kontrolle der Molmassenverteilung durch Polymerisation in der analytischen Ultrazentrifuge (Angew. Chem. 27/2018). Angewandte Chemie, 2018, 130, 8034-8034.	1.6	0
92	Infiltration of biomineral templates for nanostructured polypyrrole. RSC Advances, 2018, 8, 33748-33752.	1.7	11
93	ICCD camera technology with constant illumination source and possibilities for application in multiwavelength analytical ultracentrifugation. RSC Advances, 2018, 8, 40655-40662.	1.7	5
94	On classical and non-classical views on nucleation. Numerische Mathematik, 2018, 318, 969-988.	0.7	97
95	Nanoparticle Gradient Materials by Centrifugation. Small, 2018, 14, e1803518.	5.2	10
96	Analytical Ultracentrifugation: Nanoparticle Gradient Materials by Centrifugation (Small 50/2018). Small, 2018, 14, 1870244.	5.2	1
97	Facile Photochemical Modification of Silk Protein–Based Biomaterials. Macromolecular Bioscience, 2018, 18, e1800216.	2.1	5
98	Emerging artificial Bouligand-type structural materials. National Science Review, 2018, 5, 786-787.	4.6	3
99	Analytical band centrifugation revisited. European Biophysics Journal, 2018, 47, 799-807.	1.2	12
100	High-Resolution Asymmetrical Flow Field-Flow Fractionation Data Evaluation via Richardson–Lucy-Based Fractogram Correction. Analytical Chemistry, 2018, 90, 13978-13986.	3.2	10
101	Sedimentation of C ₆₀ and C ₇₀ : Testing the Limits of Stokes' Law. Journal of Physical Chemistry Letters, 2018, 9, 6345-6349.	2.1	7
102	Band Sedimentation Experiment in Analytical Ultracentrifugation Revisited. Analytical Chemistry, 2018, 90, 10659-10663.	3.2	11
103	Synergistic Effect of Granular Seed Substrates and Soluble Additives in Structural Control of Prismatic CaCO ₃ Thin Films. Langmuir, 2018, 34, 11126-11138.	1.6	7
104	Design concepts in absorbance optical systems for analytical ultracentrifugation. Analyst, The, 2018, 143, 4040-4050.	1.7	10
105	Biopolymer-Directed Magnetic Composites. , 2018, , 175-199.		1
106	Stabilization of Mineral Precursors by Intrinsically Disordered Proteins. Advanced Functional Materials, 2018, 28, 1802063.	7.8	24
107	Structural Transition of Inorganic Silica–Carbonate Composites Towards Curved Lifelike Morphologies. Minerals (Basel, Switzerland), 2018, 8, 75.	0.8	8
108	LED based near infrared spectral acquisition for multiwavelength analytical ultracentrifugation: A case study with gold nanoparticles. Analytica Chimica Acta, 2018, 1043, 72-80.	2.6	7

#	Article	IF	CITATIONS
109	Ionic Dependence of Gelatin Hydrogel Architecture Explored Using Small and Very Small Angle Neutron Scattering Technique. Macromolecular Bioscience, 2018, 18, e1800018.	2.1	8
110	Frontispiece: Water Dynamics from THz Spectroscopy Reveal the Locus of a Liquid–Liquid Binodal Limit in Aqueous CaCO ₃ Solutions. Angewandte Chemie - International Edition, 2017, 56, .	7.2	1
111	Mesocrystalline Films: Selfâ€Assembled Magnetite Mesocrystalline Films: Toward Structural Evolution from 2D to 3D Superlattices (Adv. Mater. Interfaces 1/2017). Advanced Materials Interfaces, 2017, 4, .	1.9	1
112	Ferrimagnetic Fibers: Toroidal Protein Adaptor Assembles Ferrimagnetic Nanoparticle Fibers with Constructive Magnetic Coupling (Adv. Funct. Mater. 7/2017). Advanced Functional Materials, 2017, 27, .	7.8	0
113	Alignment of Amorphous Iron Oxide Clusters: A Nonâ€Classical Mechanism for Magnetite Formation. Angewandte Chemie - International Edition, 2017, 56, 4042-4046.	7.2	50
114	Retrosynthesis of CaCO3 via amorphous precursor particles using gastroliths of the Red Claw lobster (Cherax quadricarinatus). Journal of Structural Biology, 2017, 199, 46-56.	1.3	4
115	Growth of organic crystals via attachment and transformation of nanoscopic precursors. Nature Communications, 2017, 8, 15933.	5.8	44
116	Mineralien im Polymer. Nachrichten Aus Der Chemie, 2017, 65, 629-631.	0.0	2
117	Synthesis of calcium carbonate in trace water environments. Chemical Communications, 2017, 53, 4811-4814.	2.2	12
118	Water Dynamics from THz Spectroscopy Reveal the Locus of a Liquid–Liquid Binodal Limit in Aqueous CaCO ₃ Solutions. Angewandte Chemie - International Edition, 2017, 56, 490-495.	7.2	101
119	Toroidal Protein Adaptor Assembles Ferrimagnetic Nanoparticle Fibers with Constructive Magnetic Coupling. Advanced Functional Materials, 2017, 27, 1604532.	7.8	6
120	Spectral and Hydrodynamic Analysis of West Nile Virus RNA–Protein Interactions by Multiwavelength Sedimentation Velocity in the Analytical Ultracentrifuge. Analytical Chemistry, 2017, 89, 862-870.	3.2	24
121	Gel-Like Calcium Carbonate Precursors Observed by <i>in situ</i> i> AFM. Langmuir, 2017, 33, 158-163.	1.6	26
122	Order and Defects in Ceramic Semiconductor Nanoparticle Superstructures as a Function of Polydispersity and Aspect Ratio. Particle and Particle Systems Characterization, 2017, 34, 1600215.	1.2	2
123	A non-classical view on calcium oxalate precipitation and the role of citrate. Nature Communications, 2017, 8, 768.	5.8	99
124	Frontispiece: Crystallization Caught in the Act with Terahertz Spectroscopy: Nonâ€Classical Pathway for <scp>l</scp> â€(+)â€Tartaric Acid. Chemistry - A European Journal, 2017, 23, .	1.7	0
125	Additive Speciation and Phase Behavior Modulating Mineralization. Journal of Physical Chemistry C, 2017, 121, 21641-21649.	1.5	8

Freeâ€Standing Materials: Freeâ€Standing Photonic Glasses Fabricated in a Centrifugal Field (Small) Tj ETQq0 0 0 rgBT /Overlock 10 Tf 5.2

#	Article	IF	Citations
127	Mass production of bulk artificial nacre with excellent mechanical properties. Nature Communications, 2017, 8, 287.	5.8	293
128	Freeâ€Standing Photonic Glasses Fabricated in a Centrifugal Field. Small, 2017, 13, 1701392.	5.2	14
129	Crystallization Caught in the Act with Terahertz Spectroscopy: Nonâ€Classical Pathway for <scp>l</scp> â€(+)â€Tartaric Acid. Chemistry - A European Journal, 2017, 23, 14128-14132.	1.7	21
130	Resonant transport and near-field effects in photonic glasses. Physical Review A, 2017, 96, .	1.0	33
131	Mesocrystalline calcium silicate hydrate: A bioinspired route toward elastic concrete materials. Science Advances, 2017, 3, e1701216.	4.7	96
132	Total morphosynthesis of biomimetic prismatic-type CaCO3 thin films. Nature Communications, 2017, 8, 1398.	5.8	61
133	Functional Gradient Inverse Opal Carbon Monoliths with Directional and Multinary Porosity. Advanced Materials, 2017, 29, 1603356.	11.1	15
134	Selfâ€Assembled Magnetite Mesocrystalline Films: Toward Structural Evolution from 2D to 3D Superlattices. Advanced Materials Interfaces, 2017, 4, 1600431.	1.9	63
135	A general strategy for colloidal stable ultrasmall amorphous mineral clusters in organic solvents. Chemical Science, 2017, 8, 1400-1405.	3.7	23
136	Hydration dynamics in CaCO <inf>3</inf> nucleation by THz spectroscopy., 2017,,.		0
137	On Mineral Retrosynthesis of a Complex Biogenic Scaffold. Inorganics, 2017, 5, 16.	1.2	10
138	A Micro-Comb Test System for In Situ Investigation of Infiltration and Crystallization Processes. Minerals (Basel, Switzerland), 2017, 7, 187.	0.8	2
139	Mesocrystals: Past, Presence, Future. Crystals, 2017, 7, 207.	1.0	72
140	Modulating Nucleation by Kosmotropes and Chaotropes: Testing the Waters. Crystals, 2017, 7, 302.	1.0	5
141	Mineralization Schemes in the Living World: Mesocrystals. , 2017, , 155-183.		16
142	Hemolysin coregulated protein 1 as a molecular gluing unit for the assembly of nanoparticle hybrid structures. Beilstein Journal of Nanotechnology, 2016, 7, 351-363.	1.5	6
143	Biomineralization of Engineered Spider Silk Protein-Based Composite Materials for Bone Tissue Engineering. Materials, 2016, 9, 560.	1.3	28
144	Mineralization and non-ideality: on nature's foundry. Biophysical Reviews, 2016, 8, 309-329.	1.5	16

#	Article	IF	Citations
145	On the biophysical regulation of mineral growth: Standing out from the crowd. Journal of Structural Biology, 2016, 196, 232-243.	1.3	14
146	Synergistic Biomineralization Phenomena Created by a Combinatorial Nacre Protein Model System. Biochemistry, 2016, 55, 2401-2410.	1.2	25
147	Anisotropic nanowire growth via a self-confined amorphous template process: A reconsideration on the role of amorphous calcium carbonate. Nano Research, 2016, 9, 1334-1345.	5.8	9
148	A solvothermal method for synthesizing monolayer protected amorphous calcium carbonate clusters. Chemical Communications, 2016, 52, 7036-7038.	2.2	33
149	Distinct Shortâ€Range Order Is Inherent to Small Amorphous Calcium Carbonate Clusters (<2â€nm). Angewandte Chemie - International Edition, 2016, 55, 12206-12209.	7.2	47
150	Recombinant perlucin derivatives influence the nucleation of calcium carbonate. CrystEngComm, 2016, 18, 8439-8444.	1.3	9
151	Challenges in the size analysis of a silica nanoparticle mixture as candidate certified reference material. Journal of Nanoparticle Research, 2016, 18, 171.	0.8	68
152	Mesocrystals: structural and morphogenetic aspects. Chemical Society Reviews, 2016, 45, 5821-5833.	18.7	171
153	Simultane Bestimmung spektraler Eigenschaften und Größen von multiplen Partikeln in Lösung mit Subnanometerâ€Auflösung. Angewandte Chemie, 2016, 128, 11944-11949.	1.6	2
154	Synthetic nacre by predesigned matrix-directed mineralization. Science, 2016, 354, 107-110.	6.0	706
155	Templated CaCO ₃ Crystallization by Submicrometer and Nanosized Fibers. Langmuir, 2016, 32, 8951-8959.	1.6	3
156	Fluorescent Nanodiamond–Gold Hybrid Particles for Multimodal Optical and Electron Microscopy Cellular Imaging. Nano Letters, 2016, 16, 6236-6244.	4.5	68
157	Simultaneous Identification of Spectral Properties and Sizes of Multiple Particles in Solution with Subnanometer Resolution. Angewandte Chemie - International Edition, 2016, 55, 11770-11774.	7.2	46
158	Shape Analysis of DNA–Au Hybrid Particles by Analytical Ultracentrifugation. ACS Nano, 2016, 10, 7418-7427.	7.3	14
159	Hydrogels from Amorphous Calcium Carbonate and Polyacrylic Acid: Bioâ€Inspired Materials for "Mineral Plastics― Angewandte Chemie - International Edition, 2016, 55, 11765-11769.	7.2	194
160	A Model Sea Urchin Spicule Matrix Protein Self-Associates To Form Mineral-Modifying Protein Hydrogels. Biochemistry, 2016, 55, 4410-4421.	1.2	22
161	The Multiwavelength UV/Vis Detector: New Possibilities with an Added Spectral Dimension. , 2016, , 63-80.		4
162	pH-Dependent Schemes of Calcium Carbonate Formation in the Presence of Alginates. Crystal Growth and Design, 2016, 16, 1349-1359.	1.4	33

#	Article	IF	CITATIONS
163	Insect Cell Glycosylation and Its Impact on the Functionality of a Recombinant Intracrystalline Nacre Protein, AP24. Biochemistry, 2016, 55, 1024-1035.	1.2	22
164	Functionalisation of silica–carbonate biomorphs. Nanoscale Horizons, 2016, 1, 144-149.	4.1	43
165	Crystals Best Paper Award 2015. Crystals, 2015, 5, 273-274.	1.0	O
166	Multifunctional layered magnetic composites. Beilstein Journal of Nanotechnology, 2015, 6, 134-148.	1.5	22
167	Next-Generation AUC. Methods in Enzymology, 2015, 562, 27-47.	0.4	33
168	Next-Generation AUC Adds a Spectral Dimension. Methods in Enzymology, 2015, 562, 1-26.	0.4	32
169	High-resolution insights into the early stages of silver nucleation and growth. Faraday Discussions, 2015, 179, 59-77.	1.6	37
170	Centrifugal Field-Induced Colloidal Assembly: From Chaos to Order. ACS Nano, 2015, 9, 6944-6950.	7.3	31
171	Crystallization by particle attachment in synthetic, biogenic, and geologic environments. Science, 2015, 349, aaa6760.	6.0	1,467
172	A simple strategy for the synthesis of well-defined bassanite nanorods. CrystEngComm, 2015, 17, 3772-3776.	1.3	40
173	Sulfonated Polymethylsiloxane as an Additive for Selective Calcium Oxalate Crystallization. European Journal of Inorganic Chemistry, 2015, 2015, 1167-1177.	1.0	15
174	Distinct Effects of Avian Egg Derived Anionic Proteoglycans on the Early Stages of Calcium Carbonate Mineralization. Crystal Growth and Design, 2015, 15, 2052-2056.	1.4	14
175	Mesocrystals in Biominerals and Colloidal Arrays. Accounts of Chemical Research, 2015, 48, 1391-1402.	7.6	156
176	Molecular protein adaptor with genetically encoded interaction sites guiding the hierarchical assembly of plasmonically active nanoparticle architectures. Nature Communications, 2015, 6, 6705.	5.8	42
177	Probing local pH-based precipitation processes in self-assembled silica-carbonate hybrid materials. Nanoscale, 2015, 7, 17434-17440.	2.8	24
178	Electrochromic properties of self-organized multifunctional V ₂ O ₅ –polymer hybrid films. Journal of Materials Chemistry C, 2015, 3, 950-954.	2.7	26
179	A Multilaboratory Comparison of Calibration Accuracy and the Performance of External References in Analytical Ultracentrifugation. PLoS ONE, 2015, 10, e0126420.	1.1	71
180	Identification of Binding Peptides on Calcium Silicate Hydrate: A Novel View on Cement Additives. Advanced Materials, 2014, 26, 1135-1140.	11.1	46

#	Article	IF	CITATIONS
181	Synthesis and Characterization of Gelatinâ€Based Magnetic Hydrogels. Advanced Functional Materials, 2014, 24, 3187-3196.	7.8	114
182	Crystallization and preliminary X-ray analysis of the C-type lectin domain of the spicule matrix protein SM50 fromStrongylocentrotus purpuratus. Acta Crystallographica Section F, Structural Biology Communications, 2014, 70, 260-262.	0.4	2
183	Mesocrystals â€" Applications and potential. Current Opinion in Colloid and Interface Science, 2014, 19, 56-65.	3.4	68
184	Nanocrystal growth via oriented attachment. CrystEngComm, 2014, 16, 1407.	1.3	22
185	Hierarchically Structured Vanadium Pentoxide–Polymer Hybrid Materials. ACS Nano, 2014, 8, 5089-5104.	7.3	23
186	A Straightforward Treatment of Activity in Aqueous CaCO ₃ Solutions and the Consequences for Nucleation Theory. Advanced Materials, 2014, 26, 752-757.	11.1	73
187	Multidimensional Analysis of Nanoparticles with Highly Disperse Properties Using Multiwavelength Analytical Ultracentrifugation. ACS Nano, 2014, 8, 8871-8886.	7.3	127
188	A Nacre Protein, n16.3, Self-Assembles To Form Protein Oligomers That Dimensionally Limit and Organize Mineral Deposits. Biochemistry, 2014, 53, 2739-2748.	1.2	36
189	Investigating Processes of Nanocrystal Formation and Transformation via Liquid Cell TEM. Microscopy and Microanalysis, 2014, 20, 425-436.	0.2	94
190	A Direct Approach to Organic/Inorganic Semiconductor Hybrid Particles via Functionalized Polyfluorene Ligands. Advanced Functional Materials, 2014, 24, 2714-2719.	7.8	24
191	Pre-nucleation clusters as solute precursors in crystallisation. Chemical Society Reviews, 2014, 43, 2348-2371.	18.7	731
192	Heterostructured Calcium Carbonate Microspheres with Calcite Equatorial Loops and Vaterite Spherical Cores. Angewandte Chemie - International Edition, 2013, 52, 6317-6321.	7.2	34
193	Roles of larval sea urchin spicule SM50 domains in organic matrix self-assembly and calcium carbonate mineralization. Journal of Structural Biology, 2013, 183, 205-215.	1.3	43
194	Investigating the Early Stages of Mineral Precipitation by Potentiometric Titration and Analytical Ultracentrifugation. Methods in Enzymology, 2013, 532, 45-69.	0.4	25
195	Thin Films: Microdomain Transformations in Mosaic Mesocrystal Thin Films (Adv. Funct. Mater.) Tj ETQq1 1 0.784	-314 rgBT 7.8	/Qverlock 10
196	Polymer-Mediated Growth of Crystals and Mesocrystals. Methods in Enzymology, 2013, 532, 277-304.	0.4	6
197	The Effect of Centrifugal Force on the Assembly and Crystallization of Binary Colloidal Systems: Towards Structural Gradients. Zeitschrift Fur Naturforschung - Section B Journal of Chemical Sciences, 2013, 68, 103-110.	0.3	10
198	Microdomain Transformations in Mosaic Mesocrystal Thin Films. Advanced Functional Materials, 2013, 23, 1547-1555.	7.8	19

#	Article	IF	CITATIONS
199	Self-assembly of amorphous calcium carbonate microlens arrays. Nature Communications, 2012, 3, 725.	5.8	147
200	Silica Biomorphs: Complex Biomimetic Hybrid Materials from "Sand and Chalk― European Journal of Inorganic Chemistry, 2012, 2012, 5123-5144.	1.0	78
201	A metastable liquid precursor phase of calcium carbonate and its interactions with polyaspartate. Faraday Discussions, 2012, 159, 291.	1.6	173
202	Structure-property relationships of a biological mesocrystal in the adult sea urchin spine. Proceedings of the National Academy of Sciences of the United States of America, 2012, 109, 3699-3704.	3.3	277
203	The existence region and composition of a polymer-induced liquid precursor phase for dl-glutamic acid crystals. Physical Chemistry Chemical Physics, 2012, 14, 914-919.	1.3	21
204	Amino acids form prenucleation clusters: ESI-MS as a fast detection method in comparison to analytical ultracentrifugation. Faraday Discussions, 2012, 159, 23.	1.6	52
205	Mixed calcium-magnesium pre-nucleation clusters enrich calcium. Zeitschrift Fur Kristallographie - Crystalline Materials, 2012, 227, 718-722.	0.4	16
206	The multiple effects of amino acids on the early stages of calcium carbonate crystallization. Zeitschrift Fur Kristallographie - Crystalline Materials, 2012, 227, 744-757.	0.4	64
207	From Bioconjugation to Selfâ€Assembly in Nanobiotechnology: Quantum Dots Trapped and Stabilized by Toroid Protein Yoctowells. Advanced Engineering Materials, 2012, 14, B344.	1.6	9
208	Colloidal Stabilization of Calcium Carbonate Prenucleation Clusters with Silica. Advanced Functional Materials, 2012, 22, 4301-4311.	7.8	103
209	Hierarchical Calcite Crystals with Occlusions of a Simple Polyelectrolyte Mimic Complex Biomineral Structures. Advanced Functional Materials, 2012, 22, 4668-4676.	7.8	69
210	How to control the scaling of CaCO3: a "fingerprinting technique―to classify additives. Physical Chemistry Chemical Physics, 2011, 13, 16811.	1.3	103
211	Additive controlled crystallization. CrystEngComm, 2011, 13, 1249.	1.3	204
212	Prenucleation clusters and non-classical nucleation. Nano Today, 2011, 6, 564-584.	6.2	521
213	Sedimentation measurements with the analytical ultracentrifuge with absorption optics: influence of Mie scattering and absorption of the particles. Colloid and Polymer Science, 2011, 289, 1145-1155.	1.0	10
214	Preparation of Hierarchical Mesocrystalline DLâ€Lysine·HCl–Poly(acrylic acid) Hybrid Thin Films. Advanced Materials, 2011, 23, 3548-3552.	11.1	20
215	Investigation of β-carotene–gelatin composite particles with a multiwavelength UV/vis detector for the analytical ultracentrifuge. European Biophysics Journal, 2010, 39, 397-403.	1.2	31
216	The Open AUC Project. European Biophysics Journal, 2010, 39, 347-359.	1,2	54

#	Article	IF	Citations
217	A Universal Ultracentrifuge Spectrometer Visualizes CNT–Intercalant–Surfactant Complexes. ChemPhysChem, 2010, 11, 3224-3227.	1.0	18
218	Mesocrystalsâ€"Ordered Nanoparticle Superstructures. Advanced Materials, 2010, 22, 1301-1330.	11.1	545
219	Analytical Ultracentrifugation of Model Nanoparticles: Comparison of Different Analysis Methods. Macromolecular Bioscience, 2010, 10, 754-762.	2.1	22
220	Fabrication of EuF ₃ â€Mesocrystals in a Gel MatrixÂ. Zeitschrift Fur Anorganische Und Allgemeine Chemie, 2010, 636, 1925-1930.	0.6	5
221	A crystal-clear view. Nature Materials, 2010, 9, 960-961.	13.3	260
222	Analytical ultracentrifugation of colloids. Nanoscale, 2010, 2, 1849.	2.8	145
223	Polymer-Induced Self-Assembly of Small Organic Molecules into Ultralong Microbelts with Electronic Conductivity. Journal of the American Chemical Society, 2010, 132, 3700-3707.	6.6	88
224	PY181 Pigment Microspheres of Nanoplates Synthesized via Polymerâ€Induced Liquid Precursors. Advanced Functional Materials, 2009, 19, 2095-2101.	7.8	31
225	The Multiple Roles of Additives in CaCO ₃ Crystallization: A Quantitative Case Study. Advanced Materials, 2009, 21, 435-439.	11.1	264
226	Calcite Crystals with Platonic Shapes and Minimal Surfaces. Angewandte Chemie - International Edition, 2009, 48, 395-399.	7.2	66
227	Influence of Selected Artificial Peptides on Calcium Carbonate Precipitation - A Quantitative Study. Crystal Growth and Design, 2009, 9, 2398-2403.	1.4	64
228	Performance of a fast fiber based UV/Vis multiwavelength detector for the analytical ultracentrifuge. Colloid and Polymer Science, 2008, 286, 121-128.	1.0	56
229	Osmotic Pressure and Phase Boundary Determination of Multiphase Systems by Analytical Ultracentrifugation. ChemPhysChem, 2008, 9, 882-890.	1.0	14
230	Polymorph Switching of Calcium Carbonate Crystals by Polymerâ€Controlled Crystallization. Advanced Functional Materials, 2008, 18, 1307-1313.	7.8	140
231	Polymerâ€Mediated Mineralization and Selfâ€Similar Mesoscaleâ€Organized Calcium Carbonate with Unusual Superstructures. Advanced Materials, 2008, 20, 1333-1338.	11.1	111
232	Controlling Mineral Morphologies and Structures in Biological and Synthetic Systems. Chemical Reviews, 2008, 108, 4332-4432.	23.0	1,222
233	Mesoporous Calcite by Polymer Templating. Crystal Growth and Design, 2008, 8, 1792-1794.	1.4	33
234	Influence of Conducting Polymers Based on Carboxylated Polyaniline onIn VitroCaCO3Crystallization. Langmuir, 2008, 24, 12496-12507.	1.6	41

#	Article	IF	CITATIONS
235	Separation of Racemate from Excess Enantiomer of Chiral Nonracemic Compounds via Density Gradient Ultracentrifugation. Journal of the American Chemical Society, 2008, 130, 2426-2427.	6.6	34
236	Stable Prenucleation Calcium Carbonate Clusters. Science, 2008, 322, 1819-1822.	6.0	1,336
237	Mesocrystal to Single Crystal Transformation of d,l-Alanine Evidenced by Small Angle Neutron Scattering. Journal of Physical Chemistry C, 2007, 111, 3224-3227.	1.5	63
238	Biomimetic mineralization. Journal of Materials Chemistry, 2007, 17, 415-449.	6.7	631
239	Continuous Structural Evolution of Calcium Carbonate Particles:Â A Unifying Model of Copolymer-Mediated Crystallization. Journal of the American Chemical Society, 2007, 129, 3729-3736.	6.6	240
240	Oriented attachment and mesocrystals: Non-classical crystallization mechanisms based on nanoparticle assembly. Physical Chemistry Chemical Physics, 2006, 8, 3271-3287.	1.3	1,023
241	Calcite Mesocrystals: "Morphing―Crystals by a Polyelectrolyte. Chemistry - A European Journal, 2006, 12, 5722-5730.	1.7	193
242	Cover Picture: Formation of Self-Organized Dynamic Structure Patterns of Barium Carbonate Crystals in Polymer-Controlled Crystallization (Angew. Chem. Int. Ed. 27/2006). Angewandte Chemie - International Edition, 2006, 45, 4383-4383.	7.2	3
243	Uniform Hexagonal Plates of Vaterite CaCO3 Mesocrystals Formed by Biomimetic Mineralization. Advanced Functional Materials, 2006, 16, 903-908.	7.8	313
244	Bio-inspired Mineralization Using Hydrophilic Polymers. , 2006, , 1-77.		118
244	Bio-inspired Mineralization Using Hydrophilic Polymers. , 2006, , 1-77. Crystalline, Porous Microspheres Made from Amino Acids by Using Polymer-Induced Liquid Precursor Phases. Angewandte Chemie - International Edition, 2005, 44, 4087-4092.	7.2	118
	Crystalline, Porous Microspheres Made from Amino Acids by Using Polymer-Induced Liquid Precursor	7.2	
245	Crystalline, Porous Microspheres Made from Amino Acids by Using Polymer-Induced Liquid Precursor Phases. Angewandte Chemie - International Edition, 2005, 44, 4087-4092. Mesocrystals: Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled		62
245 246	Crystalline, Porous Microspheres Made from Amino Acids by Using Polymer-Induced Liquid Precursor Phases. Angewandte Chemie - International Edition, 2005, 44, 4087-4092. Mesocrystals: Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment. Angewandte Chemie - International Edition, 2005, 44, 5576-5591. Polymer-Directed Formation of Unusual CaCO3 Pancakes with Controlled Surface Structures.	7.2	1,605
245 246 247	Crystalline, Porous Microspheres Made from Amino Acids by Using Polymer-Induced Liquid Precursor Phases. Angewandte Chemie - International Edition, 2005, 44, 4087-4092. Mesocrystals: Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment. Angewandte Chemie - International Edition, 2005, 44, 5576-5591. Polymer-Directed Formation of Unusual CaCO3 Pancakes with Controlled Surface Structures. Advanced Materials, 2005, 17, 1461-1465. Stable Amorphous CaCO3 Microparticles with Hollow Spherical Superstructures Stabilized by Phytic	7.2	1,605 133
245 246 247 248	Crystalline, Porous Microspheres Made from Amino Acids by Using Polymer-Induced Liquid Precursor Phases. Angewandte Chemie - International Edition, 2005, 44, 4087-4092. Mesocrystals: Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment. Angewandte Chemie - International Edition, 2005, 44, 5576-5591. Polymer-Directed Formation of Unusual CaCO3 Pancakes with Controlled Surface Structures. Advanced Materials, 2005, 17, 1461-1465. Stable Amorphous CaCO3 Microparticles with Hollow Spherical Superstructures Stabilized by Phytic Acid. Advanced Materials, 2005, 17, 2217-2221. Polymer-Induced Alignment ofdl-Alanine Nanocrystals to Crystalline Mesostructures. Chemistry - A	7.2 11.1 11.1	1,605 133 160
245 246 247 248	Crystalline, Porous Microspheres Made from Amino Acids by Using Polymer-Induced Liquid Precursor Phases. Angewandte Chemie - International Edition, 2005, 44, 4087-4092. Mesocrystals: Inorganic Superstructures Made by Highly Parallel Crystallization and Controlled Alignment. Angewandte Chemie - International Edition, 2005, 44, 5576-5591. Polymer-Directed Formation of Unusual CaCO3 Pancakes with Controlled Surface Structures. Advanced Materials, 2005, 17, 1461-1465. Stable Amorphous CaCO3 Microparticles with Hollow Spherical Superstructures Stabilized by Phytic Acid. Advanced Materials, 2005, 17, 2217-2221. Polymer-Induced Alignment ofdl-Alanine Nanocrystals to Crystalline Mesostructures. Chemistry - A European Journal, 2005, 11, 2903-2913. Amorphous layer around aragonite platelets in nacre. Proceedings of the National Academy of	7.2 11.1 11.1 1.7	1,605 133 160 156

#	Article	IF	Citations
253	Retrosynthesis of Nacre via Amorphous Precursor Particles. Chemistry of Materials, 2005, 17, 6514-6516.	3.2	126
254	Tectonic arrangement of BaCO3 nanocrystals into helices induced by a racemic block copolymer. Nature Materials, 2004, 4, 51-55.	13.3	316
255	Bio-inspired crystal morphogenesis by hydrophilic polymers. Journal of Materials Chemistry, 2004, 14, 2124-2147.	6.7	436
256	On the role of block copolymer additives for calcium carbonate crystallization: Small angle neutron scattering investigation by applying contrast variation. Journal of Chemical Physics, 2004, 120, 9410-9423.	1.2	73
257	Feature Article: Analytical Ultracentrifugation of Nanoparticles. Polymer News, 2004, 29, 101-116.	0.1	23
258	The Combination of Colloid-Controlled Heterogeneous Nucleation and Polymer-Controlled Crystallization: Facile Synthesis of Separated, Uniform High-Aspect-Ratio Single-Crystalline BaCrO4 Nanofibers. Advanced Materials, 2003, 15, 133-136.	11.1	74
259	Higher-Order Organization by Mesoscale Self-Assembly and Transformation of Hybrid Nanostructures. Angewandte Chemie - International Edition, 2003, 42, 2350-2365.	7.2	1,712
260	Precipitation of carbonates: recent progress in controlled production of complex shapes. Current Opinion in Colloid and Interface Science, 2003, 8, 23-31.	3.4	331
261	Polymer-Controlled Morphosynthesis and Mineralization of Metal Carbonate Superstructuresâ€. Journal of Physical Chemistry B, 2003, 107, 7396-7405.	1.2	266
262	Mechanism of Nanoparticle-Enhanced Turbidimetric Assays Applying Nanoparticles of Different Size and Immunoreactivityâ€. Langmuir, 2002, 18, 7623-7628.	1.6	26
263	Particle Growth Kinetics in Zirconium Sulfate Aqueous Solutions Followed by Dynamic Light Scattering and Analytical Ultracentrifugation:Â Implications for Thin Film Deposition. Langmuir, 2002, 18, 3500-3509.	1.6	49
264	The Separation of Racemic Crystals into Enantiomers by Chiral Block Copolymers. Chemistry - A European Journal, 2002, 8, 2429.	1.7	60
265	A Systematic Examination of the Morphogenesis of Calcium Carbonate in the Presence of a Double-Hydrophilic Block Copolymer. Chemistry - A European Journal, 2001, 7, 106-116.	1.7	457
266	Double-Hydrophilic Block Copolymers: Synthesis and Application as Novel Surfactants and Crystal Growth Modifiers. Macromolecular Rapid Communications, 2001, 22, 219-252.	2.0	576
267	Synthetic boundary crystallization ultracentrifugation: a new method for the observation of nucleation and growth of inorganic colloids and the determination of stabilizer efficiencies. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2000, 163, 29-38.	2.3	21
268	Field-Flow Fractionation Techniques for Polymer and Colloid Analysis. Advances in Polymer Science, 2000, , 67-187.	0.4	76
269	Investigation of the efficiencies of stabilizers for nanoparticles by synthetic boundary crystallization ultracentrifugation., 1999,, 23-28.		14
270	Crystal Design of Calcium Carbonate Microparticles Using Double-Hydrophilic Block Copolymers. Langmuir, 1998, 14, 582-589.	1.6	439

#	Article	IF	CITATIONS
271	Determination of particle size distributions with angstr $ ilde{A}\P$ m resolution. Colloid and Polymer Science, 1997, 275, 175-180.	1.0	94
272	Analytical ultracentrifugation of gels. Colloid and Polymer Science, 1995, 273, 1101-1137.	1.0	10
273	Particle Sedimentation in pH-Gradients. , 0, , 129-133.		2
274	Development of aÂFast Fiber Based UV-Vis Multiwavelength Detector for an Ultracentrifuge. , 0, , 9-22.		34
275	Application of the Density Variation Methodon Calciumcarbonate Nanoparticles. , 0, , 126-128.		12
276	Rational Design of Environmentally Compatible Nickel Hexacyanoferrate Mesocrystals as Catalysts. Journal of Physical Chemistry C, 0, , .	1.5	2
277	Eine symmetriebasierte kinematische Theorie für das Design von Nanokristallâ€Morphologien. Angewandte Chemie, 0, , .	1.6	O
278	Mimicking nature at multiple scales. Nano Research, 0, , 1.	5.8	0
279	Understanding crystal nucleation mechanisms: where do we stand? General discussion. Faraday Discussions, 0, 235, 219-272.	1.6	13
280	Tuning the Electronic Properties of Mesocrystals. Small Science, 0, , 2200014.	5.8	2