List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2944499/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                                                                               | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Analyses of pig genomes provide insight into porcine demography and evolution. Nature, 2012, 491, 393-398.                                                                                                                                            | 27.8 | 1,190     |
| 2  | Porcine Reproductive and Respiratory Syndrome Virus (PRRSV): Pathogenesis and Interaction with the Immune System. Annual Review of Animal Biosciences, 2016, 4, 129-154.                                                                              | 7.4  | 471       |
| 3  | Advances in Swine Biomedical Model Genomics. International Journal of Biological Sciences, 2007, 3, 179-184.                                                                                                                                          | 6.4  | 439       |
| 4  | Coordinated international action to accelerate genome-to-phenome with FAANG, the Functional Annotation of Animal Genomes project. Genome Biology, 2015, 16, 57.                                                                                       | 8.8  | 331       |
| 5  | Importance of the pig as a human biomedical model. Science Translational Medicine, 2021, 13, eabd5758.                                                                                                                                                | 12.4 | 234       |
| 6  | Porcine reproductive and respiratory syndrome virus: An update on an emerging and re-emerging viral disease of swine. Virus Research, 2010, 154, 1-6.                                                                                                 | 2.2  | 226       |
| 7  | Structural and functional annotation of the porcine immunome. BMC Genomics, 2013, 14, 332.                                                                                                                                                            | 2.8  | 203       |
| 8  | Interferon Induced <i>IFIT</i> Family Genes in Host Antiviral Defense. International Journal of Biological Sciences, 2013, 9, 200-208.                                                                                                                | 6.4  | 197       |
| 9  | Molecular genetics of the swine major histocompatibility complex, the SLA complex. Developmental and Comparative Immunology, 2009, 33, 362-374.                                                                                                       | 2.3  | 161       |
| 10 | Localized Multigene Expression Patterns Support an Evolving Th1/Th2-Like Paradigm in Response to<br>Infections with Toxoplasma gondii and Ascaris suum. Infection and Immunity, 2005, 73, 1116-1128.                                                  | 2.2  | 150       |
| 11 | Deciphering the involvement of innate immune factors in the development of the host response to PRRSV vaccination. Veterinary Immunology and Immunopathology, 2004, 102, 199-216.                                                                     | 1.2  | 138       |
| 12 | A Full-Length cDNA Infectious Clone of North American Type 1 Porcine Reproductive and Respiratory<br>Syndrome Virus: Expression of Green Fluorescent Protein in the Nsp2 Region. Journal of Virology,<br>2006, 80, 11447-11455.                       | 3.4  | 120       |
| 13 | Genome to Phenome: Improving Animal Health, Production, and Well-Being – A New USDA Blueprint<br>for Animal Genome Research 2018–2027. Frontiers in Genetics, 2019, 10, 327.                                                                          | 2.3  | 118       |
| 14 | TRANSPLANTATION IN MINIATURE SWINE. Transplantation, 1981, 31, 66-71.                                                                                                                                                                                 | 1.0  | 92        |
| 15 | Control of porcine reproductive and respiratory syndrome (PRRS) through genetic improvements in disease resistance and tolerance. Frontiers in Genetics, 2012, 3, 260.                                                                                | 2.3  | 92        |
| 16 | Immunodominant epitopes in nsp2 of porcine reproductive and respiratory syndrome virus are<br>dispensable for replication, but play an important role in modulation of the host immune response.<br>Journal of General Virology, 2010, 91, 1047-1057. | 2.9  | 77        |
| 17 | Interleukin-8, Interleukin-1β, and Interferon-γ Levels Are Linked to PRRS Virus Clearance. Viral<br>Immunology, 2010, 23, 127-134.                                                                                                                    | 1.3  | 72        |
| 18 | Summary of the animal homologue section of HLDA8. Cellular Immunology, 2005, 236, 51-58.                                                                                                                                                              | 3.0  | 70        |

JOAN K LUNNEY

| #  | Article                                                                                                                                                                                                                                      | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Cytokines and synthetic double-stranded RNA augment the T helper 1 immune response of swine to porcine reproductive and respiratory syndrome virus. Veterinary Immunology and Immunopathology, 2004, 102, 299-314.                           | 1.2 | 69        |
| 20 | <scp>GO</scp> â€ <scp>FAANG</scp> meeting: a Gathering On Functional Annotation of <scp>An</scp> imal Genomes. Animal Genetics, 2016, 47, 528-533.                                                                                           | 1.7 | 65        |
| 21 | Validation of a first-generation long-oligonucleotide microarray for transcriptional profiling in the pig. Genomics, 2005, 86, 618-625.                                                                                                      | 2.9 | 64        |
| 22 | A Vision for Development and Utilization of High-Throughput Phenotyping and Big Data Analytics in<br>Livestock. Frontiers in Genetics, 2019, 10, 1197.                                                                                       | 2.3 | 64        |
| 23 | Opportunities for bead-based multiplex assays in veterinary diagnostic laboratories. Journal of<br>Veterinary Diagnostic Investigation, 2013, 25, 671-691.                                                                                   | 1.1 | 62        |
| 24 | Isolation and purification of lymphocyte subsets from gut-associated lymphoid tissue in neonatal swine. Journal of Immunological Methods, 2000, 241, 185-199.                                                                                | 1.4 | 61        |
| 25 | Genetic control of host resistance to porcine reproductive and respiratory syndrome virus (PRRSV) infection. Virus Research, 2010, 154, 161-169.                                                                                             | 2.2 | 61        |
| 26 | Characterization of lymphocyte subsets from mucosal tissues in neonatal swine. Developmental and<br>Comparative Immunology, 2001, 25, 245-263.                                                                                               | 2.3 | 57        |
| 27 | Perspectives for artificial insemination and genomics to improve global swine populations.<br>Theriogenology, 2005, 63, 283-299.                                                                                                             | 2.1 | 52        |
| 28 | A cell surface ELISA in the mouse using only poly-l-lysine as cell fixative. Journal of Immunological<br>Methods, 1985, 76, 63-72.                                                                                                           | 1.4 | 50        |
| 29 | Alterations in Splenic Lymphoid Cell Subsets and Activation Antigens in Copper-Deficient Rats. Journal of Nutrition, 1991, 121, 745-753.                                                                                                     | 2.9 | 50        |
| 30 | Novel insights into host responses and reproductive pathophysiology of porcine reproductive and respiratory syndrome caused by PRRSV-2. Veterinary Microbiology, 2017, 209, 114-123.                                                         | 1.9 | 48        |
| 31 | Variation in Fetal Outcome, Viral Load and ORF5 Sequence Mutations in a Large Scale Study of<br>Phenotypic Responses to Late Gestation Exposure to Type 2 Porcine Reproductive and Respiratory<br>Syndrome Virus. PLoS ONE, 2014, 9, e96104. | 2.5 | 47        |
| 32 | Importance of the Major Histocompatibility Complex (Swine Leukocyte Antigen) in Swine Health and<br>Biomedical Research. Annual Review of Animal Biosciences, 2020, 8, 171-198.                                                              | 7.4 | 46        |
| 33 | Quantitative detection of porcine interferon-gamma in response to mitogen, superantigen and recall viral antigen. Veterinary Immunology and Immunopathology, 1998, 61, 265-277.                                                              | 1.2 | 43        |
| 34 | Gene expression profiling in Salmonella Choleraesuis-infected porcine lung using a long oligonucleotide microarray. Mammalian Genome, 2006, 17, 777-789.                                                                                     | 2.2 | 41        |
| 35 | Porcine differential gene expression in response to Salmonella enterica serovars Choleraesuis and Typhimurium. Molecular Immunology, 2007, 44, 2900-2914.                                                                                    | 2.2 | 40        |
| 36 | Maternal and fetal predictors of fetal viral load and death in third trimester, type 2 porcine reproductive and respiratory syndrome virus infected pregnant gilts. Veterinary Research, 2015, 46, 107.                                      | 3.0 | 38        |

| #  | Article                                                                                                                                                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | Identification of key immune mediators regulating T helper 1 responses in swine. Veterinary<br>Immunology and Immunopathology, 2004, 100, 105-111.                                                                                                                                                                                                              | 1.2 | 37        |
| 38 | Salmonella enterica serovar Typhimurium-infected pigs with different shedding levels exhibit distinct<br>clinical, peripheral cytokine and transcriptomic immune response phenotypes. Innate Immunity, 2015, 21,<br>227-241.                                                                                                                                    | 2.4 | 37        |
| 39 | Rapid assignment of swine leukocyte antigen haplotypes in pedigreed herds using a polymerase chain reaction-based assay. Immunogenetics, 2003, 55, 395-401.                                                                                                                                                                                                     | 2.4 | 36        |
| 40 | Global transcriptional response of porcine mesenteric lymph nodes to Salmonella enterica serovar<br>Typhimurium. Genomics, 2007, 90, 72-84.                                                                                                                                                                                                                     | 2.9 | 36        |
| 41 | Reference Transcriptomes of Porcine Peripheral Immune Cells Created Through Bulk and Single-Cell<br>RNA Sequencing. Frontiers in Genetics, 2021, 12, 689406.                                                                                                                                                                                                    | 2.3 | 36        |
| 42 | Production of monoclonal antibodies reactive with polymorphic and monomorphic determinants of SLA class I gene products. Immunogenetics, 1991, 33, 220-223.                                                                                                                                                                                                     | 2.4 | 35        |
| 43 | Current status of the swine leukocyte antigen complex. Veterinary Immunology and<br>Immunopathology, 1994, 43, 19-28.                                                                                                                                                                                                                                           | 1.2 | 35        |
| 44 | Quantitative Analysis of Porcine Reproductive and Respiratory Syndrome (PRRS) Viremia Profiles from<br>Experimental Infection: A Statistical Modelling Approach. PLoS ONE, 2013, 8, e83567.                                                                                                                                                                     | 2.5 | 35        |
| 45 | Cellular immune responses of pigs after primary inoculation with porcine respiratory coronavirus or<br>transmissible gastroenteritis virus and challenge with transmissible gastroenteritis virus. Veterinary<br>Immunology and Immunopathology, 1995, 48, 35-54.                                                                                               | 1.2 | 33        |
| 46 | Analyses of monoclonal antibodies reactive with porcine CD44 and CD45. Veterinary Immunology and Immunopathology, 1994, 43, 293-305.                                                                                                                                                                                                                            | 1.2 | 32        |
| 47 | Cytokine and lymphocyte profiles in miniature swine after oral infection with Toxoplasma gondii<br>oocysts. International Journal for Parasitology, 2001, 31, 187-195.                                                                                                                                                                                          | 3.1 | 31        |
| 48 | Pathogenicity of three type 2 porcine reproductive and respiratory syndrome virus strains in experimentally inoculated pregnant gilts. Virus Research, 2015, 203, 24-35.                                                                                                                                                                                        | 2.2 | 31        |
| 49 | Porcine cluster of differentiation (CD) markers 2018 update. Research in Veterinary Science, 2018, 118, 199-246.                                                                                                                                                                                                                                                | 1.9 | 31        |
| 50 | Definition of the specificity of monoclonal antibodies against porcine CD45 and CD45R: report from the CD45/CD45R and CD44 subgroup of the Second International Swine CD Workshop. Veterinary Immunology and Immunopathology, 1998, 60, 367-387.                                                                                                                | 1.2 | 28        |
| 51 | Cytokine and chemokine mRNA expression profiles in tracheobronchial lymph nodes from pigs singularly infected or coinfected with porcine circovirus type 2 (PCV2) and Mycoplasma hyopneumoniae (MHYO). Veterinary Immunology and Immunopathology, 2011, 140, 152-158.                                                                                           | 1.2 | 28        |
| 52 | Vaccination with a Porcine Reproductive and Respiratory Syndrome (PRRS) Modified Live Virus Vaccine<br>Followed by Challenge with PRRS Virus and Porcine Circovirus Type 2 (PCV2) Protects against PRRS<br>but Enhances PCV2 Replication and Pathogenesis Compared to Results for Nonvaccinated<br>Cochallenged Controls, Vaccine Journal, 2015, 22, 1244-1254. | 3.1 | 27        |
| 53 | MECHANISM OF TOLERANCE FOLLOWING CLASS I-DISPARATE RENAL ALLOGRAFTS IN MINIATURE SWINE.<br>Transplantation, 1990, 49, 1142-1149.                                                                                                                                                                                                                                | 1.0 | 26        |
| 54 | Genome-wide analysis of the transcriptional response to porcine reproductive and respiratory syndrome virus infection at the maternal/fetal interface and in the fetus. BMC Genomics, 2016, 17, 383.                                                                                                                                                            | 2.8 | 26        |

| #  | Article                                                                                                                                                                                                                       | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | The Second International Swine CD Workshop. Veterinary Immunology and Immunopathology, 1996, 54, 155-158.                                                                                                                     | 1.2 | 25        |
| 56 | Cytokine profiles in pregnant gilts experimentally infected with porcine reproductive and respiratory syndrome virus and relationships with viral load and fetal outcome. Veterinary Research, 2014, 45, 113.                 | 3.0 | 25        |
| 57 | Characteristics of T lymphocyte cell lines established from NIH minipigs challenge inoculated with<br>Trichinella spiralis. Veterinary Immunology and Immunopathology, 1993, 35, 301-319.                                     | 1.2 | 24        |
| 58 | Host genetics of response to porcine reproductive and respiratory syndrome in nursery pigs.<br>Veterinary Microbiology, 2017, 209, 107-113.                                                                                   | 1.9 | 24        |
| 59 | Swine leukocyte antigen and macrophage marker expression on both African swine fever<br>virus-infected and non-infected primary porcine macrophage cultures. Veterinary Immunology and<br>Immunopathology, 1992, 32, 243-259. | 1.2 | 23        |
| 60 | The minipig as an animal model to study Mycobacterium tuberculosis infection and natural transmission. Tuberculosis, 2017, 106, 91-98.                                                                                        | 1.9 | 23        |
| 61 | Birth Weight, Intrauterine Growth Retardation and Fetal Susceptibility to Porcine Reproductive and Respiratory Syndrome Virus. PLoS ONE, 2014, 9, e109541.                                                                    | 2.5 | 23        |
| 62 | Trichinella spiralis: Major histocompatibility complex-associated elimination of encysted muscle<br>larvae in swine. Experimental Parasitology, 1990, 70, 443-451.                                                            | 1.2 | 21        |
| 63 | Changes in leukocyte subsets of pregnant gilts experimentally infected with porcine reproductive and respiratory syndrome virus and relationships with viral load and fetal outcome. Veterinary Research, 2014, 45, 128.      | 3.0 | 20        |
| 64 | A current perspective on availability of tools, resources and networks for veterinary immunology.<br>Veterinary Immunology and Immunopathology, 2009, 128, 24-29.                                                             | 1.2 | 19        |
| 65 | Characterizing differential individual response to porcine reproductive and respiratory syndrome virus infection through statistical and functional analysis of gene expression. Frontiers in Genetics, 2013, 3, 321.         | 2.3 | 18        |
| 66 | Microsatellite diversity and crossover regions within homozygous and heterozygous SLA haplotypes of different pig breeds. Immunogenetics, 2008, 60, 399-407.                                                                  | 2.4 | 17        |
| 67 | Comparative antiviral and proviral factors in semen and vaccines for preventing viral dissemination from the male reproductive tract and semen. Animal Health Research Reviews, 2008, 9, 59-69.                               | 3.1 | 16        |
| 68 | CNV Analysis of Host Responses to Porcine Reproductive and Respiratory Syndrome Virus Infection.<br>Journal of Genomics, 2017, 5, 58-63.                                                                                      | 0.9 | 16        |
| 69 | T cell numbers and mitogenic responsiveness of peripheral blood mononuclear cells are decreased in copper deficient rats. Nutrition Research, 1990, 10, 749-760.                                                              | 2.9 | 15        |
| 70 | Porcine S100A8 and S100A9: Molecular characterizations and crucial functions in response to<br>Haemophilus parasuis infection. Developmental and Comparative Immunology, 2011, 35, 490-500.                                   | 2.3 | 15        |
| 71 | Prediction of Altered 3′- UTR miRNA-Binding Sites from RNA-Seq Data: The Swine Leukocyte Antigen<br>Complex (SLA) as a Model Region. PLoS ONE, 2012, 7, e48607.                                                               | 2.5 | 15        |
| 72 | CD11/CD18 panel report for swine CD workshop. Veterinary Immunology and Immunopathology, 1994, 43, 289-291.                                                                                                                   | 1.2 | 14        |

| #  | Article                                                                                                                                                                                                                                                     | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 73 | Genetic relationships of antibody response, viremia level, and weight gain in pigs experimentally<br>infected with porcine reproductive and respiratory syndrome virus1. Journal of Animal Science, 2018,<br>96, 3565-3581.                                 | 0.5 | 14        |
| 74 | Differential responses in placenta and fetal thymus at 12 days post infection elucidate mechanisms of viral level and fetal compromise following PRRSV2 infection. BMC Genomics, 2020, 21, 763.                                                             | 2.8 | 14        |
| 75 | Porcine cytokines, chemokines and growth factors: 2019 update. Research in Veterinary Science, 2020, 131, 266-300.                                                                                                                                          | 1.9 | 14        |
| 76 | Differences in Whole Blood Gene Expression Associated with Infection Time-Course and Extent of<br>Fetal Mortality in a Reproductive Model of Type 2 Porcine Reproductive and Respiratory Syndrome<br>Virus (PRRSV) Infection. PLoS ONE, 2016, 11, e0153615. | 2.5 | 13        |
| 77 | Gene expression in tonsils in swine following infection with porcine reproductive and respiratory syndrome virus. BMC Veterinary Research, 2021, 17, 88.                                                                                                    | 1.9 | 12        |
| 78 | AN ANTI-HUMAN-T-CELL MONOCLONAL ANTIBODY WITH SPECIFICITY FOR A NOVEL DETERMINANT.<br>Transplantation, 1988, 46, 143-150.                                                                                                                                   | 1.0 | 11        |
| 79 | Minipigs as a neonatal animal model for tuberculosis vaccine efficacy testing. Veterinary Immunology<br>and Immunopathology, 2019, 215, 109884.                                                                                                             | 1.2 | 9         |
| 80 | Identification of factors associated with virus level in tonsils of pigs experimentally infected with porcine reproductive and respiratory syndrome virus1. Journal of Animal Science, 2019, 97, 536-547.                                                   | 0.5 | 9         |
| 81 | The Veterinary Immunological Toolbox: Past, Present, and Future. Frontiers in Immunology, 2020, 11, 1651.                                                                                                                                                   | 4.8 | 9         |
| 82 | Molecular cloning of cDNA encoding porcine interleukin-15. Gene, 1997, 195, 337-339.                                                                                                                                                                        | 2.2 | 8         |
| 83 | Phenotypic and Functional Alterations in Peripheral Blood Mononuclear Cells of Copperâ€Đeficient<br>Rats. Annals of the New York Academy of Sciences, 1990, 587, 283-285.                                                                                   | 3.8 | 7         |
| 84 | Mapping of the porcine ? interferon (IFNA) gene to Chromosome 1 by fluorescence in situ<br>hybridization. Mammalian Genome, 1993, 4, 62-63.                                                                                                                 | 2.2 | 7         |
| 85 | Cross-reaction of anti-human CD monoclonal antibodies on guinea pig cells: A summary of the guinea<br>pig section of the HLDA8 animal homologues data. Veterinary Immunology and Immunopathology, 2007,<br>119, 131-136.                                    | 1.2 | 7         |
| 86 | Alternative strategies for the control and elimination of PRRS. Veterinary Microbiology, 2017, 209, 1-4.                                                                                                                                                    | 1.9 | 7         |
| 87 | Neonatal and infant immunity for tuberculosis vaccine development: importance of age-matched animal models. DMM Disease Models and Mechanisms, 2020, 13, .                                                                                                  | 2.4 | 7         |
| 88 | Expressed gene sequence and bioactivity of the IFNÎ <sup>3</sup> -response chemokine CXCL11 of swine and cattle.<br>Veterinary Immunology and Immunopathology, 2010, 136, 170-175.                                                                          | 1.2 | 6         |
| 89 | PREPARATION AND CHARACTERIZATION OF AN ANTISERUM SPECIFIC FOR T CELLS OF PIGS. Transplantation, 1980, 29, 477-483.                                                                                                                                          | 1.0 | 5         |
| 90 | Analyses of anti-human CD monoclonal antibodies for cross reactions with swine cell antigens.<br>Veterinary Immunology and Immunopathology, 1994, 43, 207-210.                                                                                              | 1.2 | 5         |

JOAN K LUNNEY

| #  | Article                                                                                                                                                                                   | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 91 | The Natural Cytotoxicity Receptor NKp44 (NCR2, CD336) Is Expressed on the Majority of Porcine NK<br>Cells Ex Vivo Without Stimulation. Frontiers in Immunology, 2022, 13, 767530.         | 4.8  | 4         |
| 92 | Development and Characterization of New Monoclonal Antibodies Against Porcine Interleukin-17A and<br>Interferon-Gamma. Frontiers in Immunology, 2022, 13, 786396.                         | 4.8  | 4         |
| 93 | Mapping of the porcine SLA class I gene (PD1A) and the associated repetitive element (C11) by fluorescence in situ hydribization. Mammalian Genome, 1993, 4, 64-65.                       | 2.2  | 3         |
| 94 | Expressed gene sequence of the IFNÎ <sup>3</sup> -response chemokine CXCL9 of cattle, horses, and swine. Veterinary<br>Immunology and Immunopathology, 2011, 141, 317-321.                | 1.2  | 3         |
| 95 | Advancing women scientists: the immunology experience. Nature Immunology, 2005, 6, 855-855.                                                                                               | 14.5 | 2         |
| 96 | Effector cells. Veterinary Immunology and Immunopathology, 1993, 35, 153-159.                                                                                                             | 1.2  | 0         |
| 97 | Agricultural Microbes Genome 2. Comparative and Functional Genomics, 2001, 2, 10-13.                                                                                                      | 2.0  | 0         |
| 98 | The NC229 multi-station research consortium on emerging viral diseases of swine: Solving stakeholder problems through innovative science and research. Virus Research, 2020, 280, 197898. | 2.2  | 0         |
| 99 | The transcriptional response to Salmonella infection in swine. , 0, , .                                                                                                                   |      | 0         |