
Frederic Crevecoeur

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2944158/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Integration of proprioceptive and visual feedback during online control of reaching. Journal of Neurophysiology, 2022, 127, 354-372.	1.8	18
2	Reward-Dependent Selection of Feedback Gains Impacts Rapid Motor Decisions. ENeuro, 2022, 9, ENEURO.0439-21.2022.	1.9	9
3	Continuous Tracking of Task Parameters Tunes Reaching Control Online. ENeuro, 2022, 9, ENEURO.0055-22.2022.	1.9	7
4	Effects of pupillary light and darkness reflex on the generation of pro―And antiâ€saccades. European Journal of Neuroscience, 2021, 53, 1769-1782.	2.6	12
5	Distinct adaptation patterns between grip dynamics and arm kinematics when the body is upside-down. Journal of Neurophysiology, 2021, 125, 862-874.	1.8	5
6	Interjoint coupling of position sense reflects sensory contributions of biarticular muscles. Journal of Neurophysiology, 2021, 125, 1223-1235.	1.8	7
7	Online modification of goal-directed control in human reaching movements. Journal of Neurophysiology, 2021, 125, 1883-1898.	1.8	17
8	Reward boosts reinforcement-based motor learning. IScience, 2021, 24, 102821.	4.1	23
9	Savings in Human Force Field Learning Supported by Feedback Adaptation. ENeuro, 2021, 8, ENEURO.0088-21.2021.	1.9	6
10	Improving Functional Connectome Fingerprinting with Degree-Normalization. Brain Connectivity, 2021, , .	1.7	1
11	Structure-informed functional connectivity driven by identifiable and state-specific control regions. Network Neuroscience, 2021, 5, 591-613.	2.6	2
12	Adaptive Feedback Control in Human Reaching Adaptation to Force Fields. Frontiers in Human Neuroscience, 2021, 15, 742608.	2.0	11
13	The gravitational imprint on sensorimotor planning and control. Journal of Neurophysiology, 2020, 124, 4-19.	1.8	38
14	A Very Fast Time Scale of Human Motor Adaptation: Within Movement Adjustments of Internal Representations during Reaching. ENeuro, 2020, 7, ENEURO.0149-19.2019.	1.9	34
15	Rapid Changes in Movement Representations during Human Reaching Could Be Preserved in Memory for at Least 850 ms. ENeuro, 2020, 7, ENEURO.0266-20.2020.	1.9	12
16	Feedback Adaptation to Unpredictable Force Fields in 250 ms. ENeuro, 2020, 7, ENEURO.0400-19.2020.	1.9	20
17	Filtering Compensation for Delays and Prediction Errors during Sensorimotor Control. Neural Computation, 2019, 31, 738-764.	2.2	8
18	Robust Control in Human Reaching Movements: A Model-Free Strategy to Compensate for Unpredictable Disturbances. Journal of Neuroscience, 2019, 39, 8135-8148.	3.6	53

FREDERIC CREVECOEUR

#	Article	IF	CITATIONS
19	Optimal use of limb mechanics distributes control during bimanual tasks. Journal of Neurophysiology, 2018, 119, 921-932.	1.8	15
20	Long-latency reflexes for inter-effector coordination reflect a continuous state feedback controller. Journal of Neurophysiology, 2018, 120, 2466-2483.	1.8	36
21	Correlations Between Primary Motor Cortex Activity with Recent Past and Future Limb Motion During Unperturbed Reaching. Journal of Neuroscience, 2018, 38, 7787-7799.	3.6	12
22	Multisensory components of rapid motor responses to fingertip loading. Journal of Neurophysiology, 2017, 118, 331-343.	1.8	28
23	Impact of series length on statistical precision and sensitivity of autocorrelation assessment in human locomotion. Human Movement Science, 2017, 55, 31-42.	1.4	19
24	Saccadic suppression as a perceptual consequence of efficient sensorimotor estimation. ELife, 2017, 6, .	6.0	35
25	Temporal organization of stride duration variability as a marker of gait instability in Parkinson's disease. Journal of Rehabilitation Medicine, 2016, 48, 865-871.	1.1	42
26	Dynamic Multisensory Integration: Somatosensory Speed Trumps Visual Accuracy during Feedback Control. Journal of Neuroscience, 2016, 36, 8598-8611.	3.6	84
27	Long-Latency Feedback Coordinates Upper-Limb and Hand Muscles during Object Manipulation Tasks. ENeuro, 2016, 3, ENEURO.0129-15.2016.	1.9	17
28	A perspective on multisensory integration and rapid perturbation responses. Vision Research, 2015, 110, 215-222.	1.4	66
29	Inertial torque during reaching directly impacts grip-force adaptation to weightless objects. Experimental Brain Research, 2015, 233, 3323-3332.	1.5	5
30	Fast feedback control involves two independent processes utilizing knowledge of limb dynamics. Journal of Neurophysiology, 2014, 111, 1631-1645.	1.8	43
31	Beyond Muscles Stiffness: Importance of State-Estimation to Account for Very Fast Motor Corrections. PLoS Computational Biology, 2014, 10, e1003869.	3.2	57
32	Rapid Online Selection between Multiple Motor Plans. Journal of Neuroscience, 2014, 34, 1769-1780.	3.6	130
33	Variability of Human Gait: Effect of Backward Walking and Dual-Tasking on the Presence of Long-Range Autocorrelations. Annals of Biomedical Engineering, 2014, 42, 742-750.	2.5	23
34	Gravity-dependent estimates of object mass underlie the generation of motor commands for horizontal limb movements. Journal of Neurophysiology, 2014, 112, 384-392.	1.8	11
35	Analysis of long-range autocorrelation series: effect of the number of cycles on statistical precision and sensitivity. Computer Methods in Biomechanics and Biomedical Engineering, 2014, 17, 128-129.	1.6	1

Feedback throttled down for smooth moves. Nature, 2014, 509, 38-39.

27.8 3

FREDERIC CREVECOEUR

#	Article	IF	CITATIONS
37	Dynamics of Revolution Time Variability in Cycling Pattern: Voluntary Intent Can Alter the Long-Range Autocorrelations. Annals of Biomedical Engineering, 2013, 41, 1604-1612.	2.5	15
38	Priors Engaged in Long-Latency Responses to Mechanical Perturbations Suggest a Rapid Update in State Estimation. PLoS Computational Biology, 2013, 9, e1003177.	3.2	69
39	Feedback responses rapidly scale with the urgency to correct for external perturbations. Journal of Neurophysiology, 2013, 110, 1323-1332.	1.8	57
40	Analysis of revolution time variability in cycling pattern. Computer Methods in Biomechanics and Biomedical Engineering, 2012, 15, 269-270.	1.6	0
41	Effects of age and walking speed on long-range autocorrelations and fluctuation magnitude of stride duration. Neuroscience, 2012, 210, 234-242.	2.3	27
42	Fast corrective responses are evoked by perturbations approaching the natural variability of posture and movement tasks. Journal of Neurophysiology, 2012, 107, 2821-2832.	1.8	54
43	Influence of the behavioral goal and environmental obstacles on rapid feedback responses. Journal of Neurophysiology, 2012, 108, 999-1009.	1.8	146
44	Adaptive control of grip force to compensate for static and dynamic torques during object manipulation. Journal of Neurophysiology, 2011, 106, 2973-2981.	1.8	15
45	Improving the state estimation for optimal control of stochastic processes subject to multiplicative noise. Automatica, 2011, 47, 591-596.	5.0	41
46	Towards a "gold-standard―approach to address the presence of long-range auto-correlation in physiological time series. Journal of Neuroscience Methods, 2010, 192, 163-172.	2.5	36
47	Sensorimotor Mapping for Anticipatory Grip Force Modulation. Journal of Neurophysiology, 2010, 104, 1401-1408.	1.8	17
48	Movement Stability Under Uncertain Internal Models of Dynamics. Journal of Neurophysiology, 2010, 104, 1301-1313.	1.8	52
49	Does human gait exhibit comparable and reproducible long-range autocorrelations on level ground and on treadmill?. Gait and Posture, 2010, 32, 369-373.	1.4	27
50	Optimal Integration of Gravity in Trajectory Planning of Vertical Pointing Movements. Journal of Neurophysiology, 2009, 102, 786-796.	1.8	72
51	Forward models of inertial loads in weightlessness. Neuroscience, 2009, 161, 589-598.	2.3	33