Mohamed L Seghier

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2944052/publications.pdf Version: 2024-02-01

		36299	34984
111	10,641	51	98
papers	citations	h-index	g-index
117	117	117	11911
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Multiple functions of the angular gyrus at high temporal resolution. Brain Structure and Function, 2023, 228, 7-46.	2.3	12
2	Ten simple rules for reporting machine learning methods implementation and evaluation on biomedical data. International Journal of Imaging Systems and Technology, 2022, 32, 5-11.	4.1	10
3	Demystifying desk rejection: A call to action for our authors. International Journal of Imaging Systems and Technology, 2022, 32, 701-703.	4.1	1
4	Lesions that do or do not impair digit span: a study of 816 stroke survivors. Brain Communications, 2021, 3, fcab031.	3.3	8
5	Damage to Broca's area does not contribute to long-term speech production outcome after stroke. Brain, 2021, 144, 817-832.	7.6	65
6	A Data-Based Approach for Selecting Pre- and Intra-Operative Language Mapping Tasks. Frontiers in Neuroscience, 2021, 15, 743402.	2.8	5
7	The COVIDâ€19 pandemic: What can bioengineers, computer scientists and big data specialists bring to the table. International Journal of Imaging Systems and Technology, 2020, 30, 511-512.	4.1	4
8	Categorical laterality indices in fMRI: a parallel with classic similarity indices. Brain Structure and Function, 2019, 224, 1377-1383.	2.3	5
9	Medical imaging: A new era of precision and holistic imaging. International Journal of Imaging Systems and Technology, 2019, 29, 3-3.	4.1	1
10	A guide to group effective connectivity analysis, part 1: First level analysis with DCM for fMRI. NeuroImage, 2019, 200, 174-190.	4.2	242
11	A guide to group effective connectivity analysis, part 2: Second level analysis with PEB. NeuroImage, 2019, 200, 12-25.	4.2	267
12	Dissociating the functions of superior and inferior parts of the left ventral occipito-temporal cortex during visual word and object processing. NeuroImage, 2019, 199, 325-335.	4.2	10
13	Age Affects How Task Difficulty and Complexity Modulate Perceptual Decision-Making. Frontiers in Aging Neuroscience, 2019, 11, 28.	3.4	4
14	Educational fMRI: From the Lab to the Classroom. Frontiers in Psychology, 2019, 10, 2769.	2.1	5
15	How distributed processing produces false negatives in voxel-based lesion-deficit analyses. Neuropsychologia, 2018, 115, 124-133.	1.6	30
16	Interpreting and Utilising Intersubject Variability in Brain Function. Trends in Cognitive Sciences, 2018, 22, 517-530.	7.8	216
17	The impact of sample size on the reproducibility of voxel-based lesion-deficit mappings. Neuropsychologia, 2018, 115, 101-111.	1.6	67
18	Clustering of fMRI data: the elusive optimal number of clusters. PeerJ, 2018, 6, e5416.	2.0	7

#	Article	IF	CITATIONS
19	How right hemisphere damage after stroke can impair speech comprehension. Brain, 2018, 141, 3389-3404.	7.6	53
20	Using transcranial magnetic stimulation of the undamaged brain to identify lesion sites that predict language outcome after stroke. Brain, 2017, 140, 1729-1742.	7.6	16
21	Right hemisphere structural adaptation and changing language skills years after left hemisphere stroke. Brain, 2017, 140, 1718-1728.	7.6	79
22	Large-scale DCMs for resting-state fMRI. Network Neuroscience, 2017, 1, 222-241.	2.6	146
23	Ten problems and solutions when predicting individual outcome from lesion site after stroke. NeuroImage, 2017, 145, 200-208.	4.2	75
24	Four Functionally Distinct Regions in the Left Supramarginal Gyrus Support Word Processing. Cerebral Cortex, 2016, 26, 4212-4226.	2.9	119
25	Visualising inter-subject variability in fMRI using threshold-weighted overlap maps. Scientific Reports, 2016, 6, 20170.	3.3	34
26	The neural bases of hemispheric specialization. Neuropsychologia, 2016, 93, 319-324.	1.6	23
27	Distinguishing the effect of lesion load from tract disconnection in the arcuate and uncinate fasciculi. NeuroImage, 2016, 125, 1169-1173.	4.2	44
28	The PLORAS Database: A data repository for Predicting Language Outcome and Recovery After Stroke. NeuroImage, 2016, 124, 1208-1212.	4.2	98
29	A Trade-Off between Somatosensory and Auditory Related Brain Activity during Object Naming But Not Reading. Journal of Neuroscience, 2015, 35, 4751-4759.	3.6	8
30	Comparing language outcomes in monolingual and bilingual stroke patients. Brain, 2015, 138, 1070-1083.	7.6	77
31	Molecular epidemiology of coxsackievirus type B1. Archives of Virology, 2015, 160, 2815-2821.	2.1	8
32	Dissociating the semantic function of two neighbouring subregions in the left lateral anterior temporal lobe. Neuropsychologia, 2015, 76, 153-162.	1.6	19
33	Sensory-to-motor integration during auditory repetition: a combined fMRI and lesion study. Frontiers in Human Neuroscience, 2014, 8, 24.	2.0	27
34	Dissecting the functional anatomy of auditory word repetition. Frontiers in Human Neuroscience, 2014, 8, 246.	2.0	38
35	What makes written words so special to the brain?. Frontiers in Human Neuroscience, 2014, 8, 634.	2.0	3
36	Gradual Lesion Expansion and Brain Shrinkage Years After Stroke. Stroke, 2014, 45, 877-879.	2.0	38

#	Article	IF	CITATIONS
37	Inter- and Intrahemispheric Connectivity Differences When Reading Japanese Kanji and Hiragana. Cerebral Cortex, 2014, 24, 1601-1608.	2.9	29
38	The Importance of Premotor Cortex for Supporting Speech Production after Left Capsular-Putaminal Damage. Journal of Neuroscience, 2014, 34, 14338-14348.	3.6	23
39	The influence of reading ability on subsequent changes in verbal IQ in the teenage years. Developmental Cognitive Neuroscience, 2013, 6, 30-39.	4.0	15
40	Network discovery with large DCMs. NeuroImage, 2013, 68, 181-191.	4.2	89
41	The Angular Gyrus. Neuroscientist, 2013, 19, 43-61.	3.5	1,226
42	Predicting IQ change from brain structure: A cross-validation study. Developmental Cognitive Neuroscience, 2013, 5, 172-184.	4.0	13
43	Predicting outcome and recovery after stroke with lesions extracted from MRI images. NeuroImage: Clinical, 2013, 2, 424-433.	2.7	207
44	Dissociating frontal regions that co-lateralize with different ventral occipitotemporal regions during word processing. Brain and Language, 2013, 126, 133-140.	1.6	20
45	Auditory–Motor Interactions for the Production of Native and Non-Native Speech. Journal of Neuroscience, 2013, 33, 2376-2387.	3.6	22
46	Can fully automated detection of corticospinal tract damage be used in stroke patients?. Neurology, 2013, 80, 2242-2245.	1.1	18
47	Functionally distinct contributions of the anterior and posterior putamen during sublexical and lexical reading. Frontiers in Human Neuroscience, 2013, 7, 787.	2.0	39
48	Automated identification of brain tumors from single MR images based on segmentation with refined patient-specific priors. Frontiers in Neuroscience, 2013, 7, 241.	2.8	20
49	Where, When and Why Brain Activation Differs for Bilinguals and Monolinguals during Picture Naming and Reading Aloud. Cerebral Cortex, 2012, 22, 892-902.	2.9	221
50	Reading without the left ventral occipito-temporal cortex. Neuropsychologia, 2012, 50, 3621-3635.	1.6	60
51	Functional Heterogeneity within the Default Network during Semantic Processing and Speech Production. Frontiers in Psychology, 2012, 3, 281.	2.1	81
52	Repetition enhancement and perceptual processing of visual word form. Frontiers in Human Neuroscience, 2012, 6, 206.	2.0	2
53	Multiple Routes from Occipital to Temporal Cortices during Reading. Journal of Neuroscience, 2011, 31, 8239-8247.	3.6	100
54	Phylogenetic analysis of complete VP1 sequences of echoviruses 11 and 6: high genetic diversity and circulation of genotypes with a wide geographical and temporal range. Journal of Medical Microbiology, 2011, 60, 1017-1025.	1.8	15

#	Article	IF	CITATIONS
55	Verbal and non-verbal intelligence changes in the teenage brain. Nature, 2011, 479, 113-116.	27.8	195
56	Update on molecular characterization of coxsackievirus B5 strains. Journal of Medical Virology, 2011, 83, 1247-1254.	5.0	12
57	Regional and hemispheric determinants of language laterality: Implications for preoperative fMRI. Human Brain Mapping, 2011, 32, 1602-1614.	3.6	52
58	Explaining Left Lateralization for Words in the Ventral Occipitotemporal Cortex. Journal of Neuroscience, 2011, 31, 14745-14753.	3.6	72
59	Lateralization is Predicted by Reduced Coupling from the Left to Right Prefrontal Cortex during Semantic Decisions on Written Words. Cerebral Cortex, 2011, 21, 1519-1531.	2.9	67
60	Microbleed Detection Using Automated Segmentation (MIDAS): A New Method Applicable to Standard Clinical MR Images. PLoS ONE, 2011, 6, e17547.	2.5	64
61	The Role of Functional Magnetic Resonance Imaging in the Study of Brain Development, Injury, and Recovery in the Newborn. Seminars in Perinatology, 2010, 34, 79-86.	2.5	28
62	Identifying abnormal connectivity in patients using Dynamic Causal Modelling of fMRI responses. Frontiers in Systems Neuroscience, 2010, 4, .	2.5	70
63	Reading Aloud Boosts Connectivity through the Putamen. Cerebral Cortex, 2010, 20, 570-582.	2.9	65
64	Functional Subdivisions in the Left Angular Gyrus Where the Semantic System Meets and Diverges from the Default Network. Journal of Neuroscience, 2010, 30, 16809-16817.	3.6	231
65	Developmental dyslexia in Chinese and English populations: dissociating the effect of dyslexia from language differences. Brain, 2010, 133, 1694-1706.	7.6	142
66	Predicting language outcome and recovery after stroke: the PLORAS system. Nature Reviews Neurology, 2010, 6, 202-210.	10.1	133
67	Multinomial inference on distributed responses in SPM. NeuroImage, 2010, 53, 161-170.	4.2	4
68	The Neural Substrates and Timing of Top–Down Processes during Coarse-to-Fine Categorization of Visual Scenes: A Combined fMRI and ERP Study. Journal of Cognitive Neuroscience, 2010, 22, 2768-2780.	2.3	123
69	Predicting Language Lateralization from Gray Matter. Journal of Neuroscience, 2009, 29, 13516-13523.	3.6	61
70	The Main Sources of Intersubject Variability in Neuronal Activation for Reading Aloud. Journal of Cognitive Neuroscience, 2009, 21, 654-668.	2.3	57
71	The left superior temporal gyrus is a shared substrate for auditory short-term memory and speech comprehension: evidence from 210 patients with stroke. Brain, 2009, 132, 3401-3410.	7.6	230
72	The Fusiform Face Area responds automatically to statistical regularities optimal for face categorization. Human Brain Mapping, 2009, 30, 1615-1625.	3.6	39

Mohamed L Seghier

#	Article	IF	CITATIONS
73	An anatomical signature for literacy. Nature, 2009, 461, 983-986.	27.8	362
74	Dissociating functional brain networks by decoding the between-subject variability. NeuroImage, 2009, 45, 349-359.	4.2	36
75	Group analysis and the subject factor in functional magnetic resonance imaging: Analysis of fifty right-handed healthy subjects in a semantic language task. Human Brain Mapping, 2008, 29, 461-477.	3.6	54
76	Laterality index in functional MRI: methodological issues. Magnetic Resonance Imaging, 2008, 26, 594-601.	1.8	399
77	Lesion identification using unified segmentation-normalisation models and fuzzy clustering. NeuroImage, 2008, 41, 1253-1266.	4.2	335
78	Inter-subject variability in the use of two different neuronal networks for reading aloud familiar words. NeuroImage, 2008, 42, 1226-1236.	4.2	79
79	Explaining Function with Anatomy: Language Lateralization and Corpus Callosum Size. Journal of Neuroscience, 2008, 28, 14132-14139.	3.6	102
80	Language Control and Lexical Competition in Bilinguals: An Event-Related fMRI Study. Cerebral Cortex, 2008, 18, 1496-1505.	2.9	327
81	Intrauterine Growth Restriction Affects the Preterm Infant's Hippocampus. Pediatric Research, 2008, 63, 438-443.	2.3	187
82	Rhyme processing in the brain: An ERP mapping study. International Journal of Psychophysiology, 2007, 63, 240-250.	1.0	33
83	Detecting subject-specific activations using fuzzy clustering. NeuroImage, 2007, 36, 594-605.	4.2	30
84	WSPM: Wavelet-based statistical parametric mapping. NeuroImage, 2007, 37, 1205-1217.	4.2	37
85	The fusiform face area is tuned for curvilinear patterns with more high-contrasted elements in the upper part. NeuroImage, 2006, 31, 313-319.	4.2	62
86	Neural systems for orienting attention to the location of threat signals: An event-related fMRI study. NeuroImage, 2006, 31, 920-933.	4.2	141
87	Functional MRI of the newborn. Seminars in Fetal and Neonatal Medicine, 2006, 11, 479-488.	2.3	51
88	Functional neuroimaging findings on the human perception of illusory contours. Neuroscience and Biobehavioral Reviews, 2006, 30, 595-612.	6.1	115
89	Discriminating emotional faces without primary visual cortices involves the right amygdala. Nature Neuroscience, 2005, 8, 24-25.	14.8	284
90	The voices of wrath: brain responses to angry prosody in meaningless speech. Nature Neuroscience, 2005, 8, 145-146.	14.8	384

#	Article	IF	CITATIONS
91	Visual recovery after perinatal stroke evidenced by functional and diffusion MRI: case report. BMC Neurology, 2005, 5, 17.	1.8	47
92	Portraits or People? Distinct Representations of Face Identity in the Human Visual Cortex. Journal of Cognitive Neuroscience, 2005, 17, 1043-1057.	2.3	114
93	Anatomical variability of the lateral frontal lobe surface: implication for intersubject variability in language neuroimaging. NeuroImage, 2005, 24, 504-514.	4.2	74
94	View-independent coding of face identity in frontal and temporal cortices is modulated by familiarity: an event-related fMRI study. NeuroImage, 2005, 24, 1214-1224.	4.2	133
95	Hemispheric specialization of human inferior temporal cortex during coarse-to-fine and fine-to-coarse analysis of natural visual scenes. NeuroImage, 2005, 28, 464-473.	4.2	49
96	Emotion and attention interactions in social cognition: Brain regions involved in processing anger prosody. NeuroImage, 2005, 28, 848-858.	4.2	350
97	Functional magnetic resonance imaging and diffusion tensor imaging in a case of central poststroke pain. Journal of Pain, 2005, 6, 208-212.	1.4	74
98	Translational and Brownian motion in laser-Doppler flowmetry of large tissue volumes. Physics in Medicine and Biology, 2004, 49, 5445-5458.	3.0	20
99	fMRI Evidence for Activation of Multiple Cortical Regions in the Primary Auditory Cortex of Deaf Subjects Users of Multichannel Cochlear Implants. Cerebral Cortex, 2004, 15, 40-48.	2.9	22
100	Illusory persistence of touch after right parietal damage: neural correlates of tactile awareness. Brain, 2004, 128, 277-290.	7.6	23
101	Tactile awareness and limb position in neglect: Functional magnetic resonance imaging. Annals of Neurology, 2004, 55, 139-143.	5.3	33
102	Variability of fMRI activation during a phonological and semantic language task in healthy subjects. Human Brain Mapping, 2004, 23, 140-155.	3.6	181
103	Combination of event-related fMRI and diffusion tensor imaging in an infant with perinatal stroke. NeuroImage, 2004, 21, 463-472.	4.2	93
104	Transient crossed aphasia evidenced by functional brain imagery. NeuroReport, 2004, 15, 785-790.	1.2	16
105	Brain activation using triggered event-related fMRI. NeuroImage, 2003, 18, 410-415.	4.2	5
106	A network of occipito-temporal face-sensitive areas besides the right middle fusiform gyrus is necessary for normal face processing. Brain, 2003, 126, 2381-2395.	7.6	611
107	Functional MRI of Auditory Cortex Activated by Multisite Electrical Stimulation of the Cochlea. NeuroImage, 2002, 17, 1010-1017.	4.2	24
108	Functional MRI of auditory cortex activated by multisite electrical stimulation of the cochlea. NeuroImage, 2002, 17, 1010-7.	4.2	9

#	Article	IF	CITATIONS
109	fMRI on patients with lesions involving language areas: implications for neurosurgery. NeuroImage, 2001, 13, 836.	4.2	1
110	Language representation in a patient with a dominant right hemisphere: fMRI evidence for an intrahemispheric reorganisation. NeuroReport, 2001, 12, 2785-2790.	1.2	26
111	An active human role is essential in big data-led decisions and data-intensive science. F1000Research, 0, 10, 1127.	1.6	0