Molly M Stevens

List of Publications by Year in Descending Order

Source: https://exaly.com/author-pdf/2943961/molly-m-stevens-publications-by-year.pdf

Version: 2024-04-26

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

209	12,874	52	109
papers	citations	h-index	g-index
233	16,017 ext. citations	13.1	7.09
ext. papers		avg, IF	L-index

#	Paper	IF	Citations
209	Tunable Microgel-Templated Porogel (MTP) Bioink for 3D Bioprinting Applications <i>Advanced Healthcare Materials</i> , 2022 , e2200027	10.1	2
208	Novel endosomolytic compounds enable highly potent delivery of antisense oligonucleotides <i>Communications Biology</i> , 2022 , 5, 185	6.7	3
207	Presentation of antigen on extracellular vesicles using transmembrane domains from viral glycoproteins for enhanced immunogenicity <i>Journal of Extracellular Vesicles</i> , 2022 , 11, e12199	16.4	1
206	Coupling Lipid Nanoparticle Structure and Automated Single Particle Composition Analysis to Design Phospholipase Responsive Nanocarriers <i>Advanced Materials</i> , 2022 , e2200839	24	O
205	Sub-picomolar lateral flow antigen detection with two-wavelength imaging of composite nanoparticles <i>Biosensors and Bioelectronics</i> , 2022 , 207, 114133	11.8	О
204	Bacterial toxin-triggered release of antibiotics from capsosomes protects a fly model from lethal methicillin-resistant Staphylococcus aureus (MRSA) infection <i>Advanced Healthcare Materials</i> , 2022 , e22	2 0 00 ⁷ 36	; o
203	In vitro and in vivo investigation of a zonal microstructured scaffold for osteochondral defect repair <i>Biomaterials</i> , 2022 , 286, 121548	15.6	4
202	Advancing cell instructive biomaterials through increased understanding of cell receptor spacing and material surface functionalization. <i>Regenerative Engineering and Translational Medicine</i> , 2021 , 7, 553-547	2.4	4
201	Kinetics of RNA and RNA:DNA Hybrid Strand Displacement. ACS Synthetic Biology, 2021, 10, 3066-3073	5.7	5
200	A dynamic duo. <i>Science</i> , 2021 , 374, 825-826	33.3	2
199	High-Throughput Molecular Imaging via Deep-Learning-Enabled Raman Spectroscopy. <i>Analytical Chemistry</i> , 2021 , 93, 15850-15860	7.8	4
198	A Novel Ventilator Design for COVID-19 and Resource-Limited Settings <i>Frontiers in Medical Technology</i> , 2021 , 3, 707826	1.9	1
197	IL-1Imediated nanoscale surface clustering of integrin BII regulates the adhesion of mesenchymal stem cells. <i>Scientific Reports</i> , 2021 , 11, 6890	4.9	1
196	Iodide-Mediated Rapid and Sensitive Surface Etching of Gold Nanostars for Biosensing. <i>Angewandte Chemie</i> , 2021 , 133, 9979-9984	3.6	1
195	Iodide-Mediated Rapid and Sensitive Surface Etching of Gold Nanostars for Biosensing. <i>Angewandte Chemie - International Edition</i> , 2021 , 60, 9891-9896	16.4	11
194	Surfactant Protein B Promotes Cytosolic SiRNA Delivery by Adopting a Virus-like Mechanism of Action. <i>ACS Nano</i> , 2021 , 15, 8095-8109	16.7	12
193	Nanoceria provides antioxidant and osteogenic properties to mesoporous silica nanoparticles for osteoporosis treatment. <i>Acta Biomaterialia</i> , 2021 , 122, 365-376	10.8	17

(2020-2021)

192	Fiber-Based Electrochemical Biosensors for Monitoring pH and Transient Neurometabolic Lactate. <i>Analytical Chemistry</i> , 2021 , 93, 6646-6655	7.8	13	
191	Colistin kills bacteria by targeting lipopolysaccharide in the cytoplasmic membrane. <i>ELife</i> , 2021 , 10,	8.9	33	
190	3D printed silica-gelatin hybrid scaffolds of specific channel sizes promote collagen Type II, Sox9 and Aggrecan production from chondrocytes. <i>Materials Science and Engineering C</i> , 2021 , 123, 111964	8.3	8	
189	The Fourth Bioelectronic Medicine Summit "Technology Targeting Molecular Mechanisms": current progress, challenges, and charting the future. <i>Bioelectronic Medicine</i> , 2021 , 7, 7	5.4	1	
188	Advances in the Fabrication of Biomaterials for Gradient Tissue Engineering. <i>Trends in Biotechnology</i> , 2021 , 39, 150-164	15.1	37	
187	Driving Hierarchical Collagen Fiber Formation for Functional Tendon, Ligament, and Meniscus Replacement. <i>Biomaterials</i> , 2021 , 269, 120527	15.6	21	
186	Assessing the impact of silicon nanowires on bacterial transformation and viability of. <i>Journal of Materials Chemistry B</i> , 2021 , 9, 4906-4914	7.3	2	
185	Nanoneedle-Based Materials for Intracellular Studies. <i>Advances in Experimental Medicine and Biology</i> , 2021 , 1295, 191-219	3.6	2	
184	Tumor-Targeting Cholesterol-Decorated DNA Nanoflowers for Intracellular Ratiometric Aptasensing. <i>Advanced Materials</i> , 2021 , 33, e2007738	24	10	
183	High-Throughput Peptide Derivatization toward Supramolecular Diversification in Microtiter Plates. <i>ACS Nano</i> , 2021 , 15, 4034-4044	16.7	1	
182	Extracellular vesicles for tissue repair and regeneration: Evidence, challenges and opportunities. <i>Advanced Drug Delivery Reviews</i> , 2021 , 175, 113775	18.5	21	
181	Design of Lipid-Based Nanocarriers via Cation Modulation of Ethanol-Interdigitated Lipid Membranes. <i>Langmuir</i> , 2021 , 37, 11909-11921	4	2	
180	Delivery of Oligonucleotide Therapeutics: Chemical Modifications, Lipid Nanoparticles, and Extracellular Vesicles. <i>ACS Nano</i> , 2021 , 15, 13993-14021	16.7	16	
179	Polymeric and lipid nanoparticles for delivery of self-amplifying RNA vaccines. <i>Journal of Controlled Release</i> , 2021 , 338, 201-210	11.7	11	
178	Controlled Dendrimersome Nanoreactor System for Localized Hypochlorite-Induced Killing of Bacteria. <i>ACS Nano</i> , 2020 ,	16.7	15	
177	Molecular imaging of extracellular vesicles in vitro via Raman metabolic labelling. <i>Journal of Materials Chemistry B</i> , 2020 , 8, 4447-4459	7.3	6	
176	Engineering the drug carrier biointerface to overcome biological barriers to drug delivery. <i>Advanced Drug Delivery Reviews</i> , 2020 , 167, 89-108	18.5	31	
175	Dynamic pH responsivity of triazole-based self-immolative linkers. <i>Chemical Science</i> , 2020 , 11, 3713-371	189.4	10	

174	Scaffold channel size influences stem cell differentiation pathway in 3-D printed silica hybrid scaffolds for cartilage regeneration. <i>Biomaterials Science</i> , 2020 , 8, 4458-4466	7.4	26
173	Synthesis of Phospho-Amino Acid Analogues as Tissue Adhesive Cement Additives. <i>ACS Central Science</i> , 2020 , 6, 226-231	16.8	5
172	Modeling the transport of nuclear proteins along single skeletal muscle cells. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2020 , 117, 2978-2986	11.5	13
171	Assembling Living Building Blocks to Engineer Complex Tissues. <i>Advanced Functional Materials</i> , 2020 , 30, 1909009	15.6	31
170	Gold Nanocluster Extracellular Vesicle Supraparticles: Self-Assembled Nanostructures for Three-Dimensional Uptake Visualization. <i>Langmuir</i> , 2020 , 36, 3912-3923	4	5
169	Photoswitchable gRNAs for Spatiotemporally Controlled CRISPR-Cas-Based Genomic Regulation. <i>ACS Central Science</i> , 2020 , 6, 695-703	16.8	33
168	Big Is Beautiful: Enhanced saRNA Delivery and Immunogenicity by a Higher Molecular Weight, Bioreducible, Cationic Polymer. <i>ACS Nano</i> , 2020 , 14, 5711-5727	16.7	47
167	. IEEE Journal of Electromagnetics, RF and Microwaves in Medicine and Biology, 2020 , 4, 97-108	2.8	6
166	Void-free 3D Bioprinting for In-situ Endothelialization and Microfluidic Perfusion. <i>Advanced Functional Materials</i> , 2020 , 30, 1908349	15.6	50
165	Surface enhanced Raman scattering artificial nose for high dimensionality fingerprinting. <i>Nature Communications</i> , 2020 , 11, 207	17.4	49
164	Ultrasound-Triggered Enzymatic Gelation. Advanced Materials, 2020, 32, e1905914	24	18
163	Remote Magnetic Nanoparticle Manipulation Enables the Dynamic Patterning of Cardiac Tissues. <i>Advanced Materials</i> , 2020 , 32, e1904598	24	40
162	Organic Bioelectronics: Using Highly Conjugated Polymers to Interface with Biomolecules, Cells, and Tissues in the Human Body. <i>Advanced Materials Technologies</i> , 2020 , 5, 2000384	6.8	19
161	Micro and nanoscale technologies in oral drug delivery. Advanced Drug Delivery Reviews, 2020, 157, 37-6	5 2 8.5	45
160	Nanoscale Molecular Quantification of Stem Cell-Hydrogel Interactions. ACS Nano, 2020,	16.7	8
159	In vivo biomolecular imaging of zebrafish embryos using confocal Raman spectroscopy. <i>Nature Communications</i> , 2020 , 11, 6172	17.4	13
158	Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. <i>Frontiers in Cardiovascular Medicine</i> , 2020 , 7, 554597	5.4	31
157	Digital technologies in the public-health response to COVID-19. <i>Nature Medicine</i> , 2020 , 26, 1183-1192	50.5	303

(2019-2020)

156	Neutrophils Enable Local and Non-Invasive Liposome Delivery to Inflamed Skeletal Muscle and Ischemic Heart. <i>Advanced Materials</i> , 2020 , 32, e2003598	24	31
155	Harnessing the secreted extracellular matrix to engineer tissues. <i>Nature Biomedical Engineering</i> , 2020 , 4, 357-363	19	30
154	Expanding and optimizing 3D bioprinting capabilities using complementary network bioinks. <i>Science Advances</i> , 2020 , 6,	14.3	56
153	An Electroactive Oligo-EDOT Platform for Neural Tissue Engineering. <i>Advanced Functional Materials</i> , 2020 , 30, 2003710	15.6	21
152	Tailoring Gelation Mechanisms for Advanced Hydrogel Applications. <i>Advanced Functional Materials</i> , 2020 , 30, 2002759	15.6	60
151	An improved synthesis of poly(amidoamine)s for complexation with self-amplifying RNA and effective transfection. <i>Polymer Chemistry</i> , 2020 , 11, 5861-5869	4.9	2
150	Using Remote Fields for Complex Tissue Engineering. <i>Trends in Biotechnology</i> , 2020 , 38, 254-263	15.1	32
149	Advances in high-resolution microscopy for the study of intracellular interactions with biomaterials. <i>Biomaterials</i> , 2020 , 226, 119406	15.6	15
148	Renal clearable catalytic gold nanoclusters for in vivo disease monitoring. <i>Nature Nanotechnology</i> , 2019 , 14, 883-890	28.7	178
147	Detection of microRNA biomarkers via inhibition of DNA-mediated liposome fusion. <i>Nanoscale Advances</i> , 2019 , 1, 532-536	5.1	8
146	Activatable cell-biomaterial interfacing with photo-caged peptides. Chemical Science, 2019, 10, 1158-11	67 .4	16
145	The Future of Layer-by-Layer Assembly: A Tribute to ACS Nano Associate Editor Helmuth Mīlwald. <i>ACS Nano</i> , 2019 , 13, 6151-6169	16.7	127
144	Open vessel free radical photopolymerization of double network gels for biomaterial applications using glucose oxidase. <i>Journal of Materials Chemistry B</i> , 2019 , 7, 4030-4039	7.3	3
143	Rolling Circle Transcription-Amplified Hierarchically Structured Organic-Inorganic Hybrid RNA Flowers for Enzyme Immobilization. <i>ACS Applied Materials & Amp; Interfaces</i> , 2019 , 11, 22932-22940	9.5	12
142	Immunogold FIB-SEM: Combining Volumetric Ultrastructure Visualization with 3D Biomolecular Analysis to Dissect Cell-Environment Interactions. <i>Advanced Materials</i> , 2019 , 31, e1900488	24	12
141	Toward Regeneration of the Heart: Bioengineering Strategies for Immunomodulation. <i>Frontiers in Cardiovascular Medicine</i> , 2019 , 6, 26	5.4	29
140	The Design and Testing of a Locally Stiffness-Matched Porous Scaffold. <i>Applied Materials Today</i> , 2019 , 15, 377-388	6.6	51
139	Biointerfaces: Porous Silicon Nanoneedles Modulate Endocytosis to Deliver Biological Payloads (Adv. Mater. 12/2019). <i>Advanced Materials</i> , 2019 , 31, 1970086	24	5

138	Buoyancy-Driven Gradients for Biomaterial Fabrication and Tissue Engineering. <i>Advanced Materials</i> , 2019 , 31, e1900291	24	36
137	Multifunctional hyaluronate - nanoparticle hybrid systems for diagnostic, therapeutic and theranostic applications. <i>Journal of Controlled Release</i> , 2019 , 303, 55-66	11.7	16
136	Effect of Formulation Method, Lipid Composition, and PEGylation on Vesicle Lamellarity: A Small-Angle Neutron Scattering Study. <i>Langmuir</i> , 2019 , 35, 6064-6074	4	46
135	Rheological Characterization of Biomaterials Directs Additive Manufacturing of Strontium-Substituted Bioactive Glass/Polycaprolactone Microfibers. <i>Macromolecular Rapid Communications</i> , 2019 , 40, e1900019	4.8	28
134	Emerging Technologies for Tissue Engineering: From Gene Editing to Personalized Medicine. <i>Tissue Engineering - Part A</i> , 2019 , 25, 688-692	3.9	18
133	Bioinspired Fabrication of DNA-Inorganic Hybrid Composites Using Synthetic DNA. <i>ACS Nano</i> , 2019 , 13, 2888-2900	16.7	31
132	Cubosomen: die n\(\text{lhste}\) Generation intelligenter Lipid-Nanopartikel?. <i>Angewandte Chemie</i> , 2019 , 131, 2984-3006	3.6	6
131	Glycosaminoglycan-based biomaterials for growth factor and cytokine delivery: Making the right choices. <i>Journal of Controlled Release</i> , 2019 , 313, 131-147	11.7	48
130	A Dual Wavelength Polymerization and Bioconjugation Strategy for High Throughput Synthesis of Multivalent Ligands. <i>Journal of the American Chemical Society</i> , 2019 , 141, 19823-19830	16.4	10
129	In vivo biocompatibility and immunogenicity of metal-phenolic gelation. <i>Chemical Science</i> , 2019 , 10, 10	179 ₄ 10	1 94
128	Individual response variations in scaffold-guided bone regeneration are determined by independent strain- and injury-induced mechanisms. <i>Biomaterials</i> , 2019 , 194, 183-194	15.6	34
127	Physical stimuli-responsive vesicles in drug delivery: Beyond liposomes and polymersomes. <i>Advanced Drug Delivery Reviews</i> , 2019 , 138, 259-275	18.5	92
126	Cubosomes: The Next Generation of Smart Lipid Nanoparticles?. <i>Angewandte Chemie - International Edition</i> , 2019 , 58, 2958-2978	16.4	183
125	Engineering Extracellular Vesicles with the Tools of Enzyme Prodrug Therapy. <i>Advanced Materials</i> , 2018 , 30, e1706616	24	50
124	Auxetic Cardiac Patches with Tunable Mechanical and Conductive Properties toward Treating Myocardial Infarction. <i>Advanced Functional Materials</i> , 2018 , 28, 1800618	15.6	102
123	Drug Delivery: Engineering Extracellular Vesicles with the Tools of Enzyme Prodrug Therapy (Adv. Mater. 15/2018). <i>Advanced Materials</i> , 2018 , 30, 1870109	24	
122	Fabrication of Hemin-Doped Serum Albumin-Based Fibrous Scaffolds for Neural Tissue Engineering Applications. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 5305-5317	9.5	42
121	Scarring vs. functional healing: Matrix-based strategies to regulate tissue repair. <i>Advanced Drug Delivery Reviews</i> , 2018 , 129, 407-419	18.5	50

(2018-2018)

120	A Serological Point-of-Care Test for the Detection of IgG Antibodies against Ebola Virus in Human Survivors. <i>ACS Nano</i> , 2018 , 12, 63-73	16.7	111
119	Fractal-like hierarchical organization of bone begins at the nanoscale. <i>Science</i> , 2018 , 360,	33.3	231
118	Culturing functional pancreatic islets on B -laminins and curative transplantation to diabetic mice. <i>Matrix Biology</i> , 2018 , 70, 5-19	11.4	16
117	Enzyme Prodrug Therapy Achieves Site-Specific, Personalized Physiological Responses to the Locally Produced Nitric Oxide. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 10741-10751	9.5	23
116	Bloch surface wave label-free and fluorescence platform for the detection of VEGF biomarker in biological matrices. <i>Sensors and Actuators B: Chemical</i> , 2018 , 255, 2143-2150	8.5	20
115	Fate of Liposomes in the Presence of Phospholipase C and D: From Atomic to Supramolecular Lipid Arrangement. <i>ACS Central Science</i> , 2018 , 4, 1023-1030	16.8	12
114	Achieving Controlled Biomolecule-Biomaterial Conjugation. <i>Chemical Reviews</i> , 2018 , 118, 7702-7743	68.1	105
113	Elastic serum-albumin based hydrogels: mechanism of formation and application in cardiac tissue engineering. <i>Journal of Materials Chemistry B</i> , 2018 , 6, 5604-5612	7.3	24
112	Duplex-Specific Nuclease-Amplified Detection of MicroRNA Using Compact Quantum Dot-DNA Conjugates. <i>ACS Applied Materials & Date of the Conjugates and Conjugates are also as a conjugate and Conjugates are also as a conjugate and Conjugates are also as a conjugate and Conjugate and Conjugates are also as a conjugate and Conjugate and Conjugates are also as a conjugate and Conjugate and Conjugate are also as a conjugate and Conjugate and Conjugate are also as a conjugate and Conjugate are a conjugate and Conjugate and Conjugate and Conjugate are also as a conjugate and Conjugate are a conjugate and Conjugate and Conjugate are a conjugate are a conjugate are a conjugate are a conju</i>	9.5	43
111	Bouncing and 3D printable hybrids with self-healing properties. <i>Materials Horizons</i> , 2018 , 5, 849-860	14.4	28
110	A low friction, biphasic and boundary lubricating hydrogel for cartilage replacement. <i>Acta Biomaterialia</i> , 2018 , 65, 102-111	10.8	55
109	MicroRNA Detection by DNA-Mediated Liposome Fusion. <i>ChemBioChem</i> , 2018 , 19, 434-438	3.8	20
108	Platinum Nanocatalyst Amplification: Redefining the Gold Standard for Lateral Flow Immunoassays with Ultrabroad Dynamic Range. <i>ACS Nano</i> , 2018 , 12, 279-288	16.7	176
107	Surface Dynamics and Ligand-Core Interactions of Quantum Sized Photoluminescent Gold Nanoclusters. <i>Journal of the American Chemical Society</i> , 2018 , 140, 18217-18226	16.4	33
106	Single Particle Automated Raman Trapping Analysis. <i>Nature Communications</i> , 2018 , 9, 4256	17.4	19
105	Engineering Anisotropic Muscle Tissue using Acoustic Cell Patterning. <i>Advanced Materials</i> , 2018 , 30, e1	802649	92
104	Hybrids of Silica/Poly(caprolactone coglycidoxypropyl trimethoxysilane) as Biomaterials. <i>Chemistry of Materials</i> , 2018 , 30, 3743-3751	9.6	12
103	Glycosylated superparamagnetic nanoparticle gradients for osteochondral tissue engineering. <i>Biomaterials</i> , 2018 , 176, 24-33	15.6	65

102	Strategic design of extracellular vesicle drug delivery systems. <i>Advanced Drug Delivery Reviews</i> , 2018 , 130, 12-16	18.5	104
101	Plasmonic Chirality Imprinting on Nucleobase-Displaying Supramolecular Nanohelices by Metal-Nucleobase Recognition. <i>Angewandte Chemie - International Edition</i> , 2017 , 56, 2361-2365	16.4	24
100	Synthesis of Hetero-bifunctional, End-Capped Oligo-EDOT Derivatives. <i>CheM</i> , 2017 , 2, 125-138	16.2	14
99	Plasmonic Chirality Imprinting on Nucleobase-Displaying Supramolecular Nanohelices by Metal Mucleobase Recognition. <i>Angewandte Chemie</i> , 2017 , 129, 2401-2405	3.6	7
98	Re-Engineering Extracellular Vesicles as Smart Nanoscale Therapeutics. ACS Nano, 2017, 11, 69-83	16.7	286
97	Enhanced articular cartilage by human mesenchymal stem cells in enzymatically mediated transiently RGDS-functionalized collagen-mimetic hydrogels. <i>Acta Biomaterialia</i> , 2017 , 51, 75-88	10.8	36
96	Localized and Controlled Delivery of Nitric Oxide to the Conventional Outflow Pathway via Enzyme Biocatalysis: Toward Therapy for Glaucoma. <i>Advanced Materials</i> , 2017 , 29, 1604932	24	69
95	Biodegradable inorganic-organic hybrids of methacrylate star polymers for bone regeneration. <i>Acta Biomaterialia</i> , 2017 , 54, 411-418	10.8	20
94	Facet-Dependent Interactions of Islet Amyloid Polypeptide with Gold Nanoparticles: Implications for Fibril Formation and Peptide-Induced Lipid Membrane Disruption. <i>Chemistry of Materials</i> , 2017 , 29, 1550-1560	9.6	21
93	One-Pot Synthesis of Multiple Protein-Encapsulated DNA Flowers and Their Application in Intracellular Protein Delivery. <i>Advanced Materials</i> , 2017 , 29, 1701086	24	71
92	Peptide-Functionalized Fluorescent Particles for In Situ Detection of Nitric Oxide via Peroxynitrite-Mediated Nitration. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1700383	10.1	7
91	Self-Healing, Self-Assembled Esheet Peptide-Poly(Eglutamic acid) Hybrid Hydrogels. <i>Journal of the American Chemical Society</i> , 2017 , 139, 7250-7255	16.4	114
90	Functional Adaptation of the Calcaneus in Historical Foot Binding. <i>Journal of Bone and Mineral Research</i> , 2017 , 32, 1915-1925	6.3	11
89	Probing amylin fibrillation at an early stage via a tetracysteine-recognising fluorophore. <i>Talanta</i> , 2017 , 173, 44-50	6.2	10
88	Electron Hopping Across Hemin-Doped Serum Albumin Mats on Centimeter-Length Scales. <i>Advanced Materials</i> , 2017 , 29, 1700810	24	20
87	Multimodal Hydrogel-Based Platform To Deliver and Monitor Cardiac Progenitor/Stem Cell Engraftment. ACS Central Science, 2017, 3, 338-348	16.8	17
86	Diverse Applications of Nanomedicine. ACS Nano, 2017, 11, 2313-2381	16.7	714
85	Human Induced Pluripotent Stem Cell-Derived Cardiomyocyte Encapsulating Bioactive Hydrogels Improve Rat Heart Function Post Myocardial Infarction. <i>Stem Cell Reports</i> , 2017 , 9, 1415-1422	8	69

(2016-2017)

84	Self-Assembled 2D Free-Standing Janus Nanosheets with Single-Layer Thickness. <i>Journal of the American Chemical Society</i> , 2017 , 139, 13592-13595	16.4	71
83	Highly porous scaffolds of PEDOT:PSS for bone tissue engineering. <i>Acta Biomaterialia</i> , 2017 , 62, 91-101	10.8	119
82	Enzyme Prodrug Therapy Engineered into Electrospun Fibers with Embedded Liposomes for Controlled, Localized Synthesis of Therapeutics. <i>Advanced Healthcare Materials</i> , 2017 , 6, 1700385	10.1	29
81	Sequence-Dependent Self-Assembly and Structural Diversity of Islet Amyloid Polypeptide-Derived Esheet Fibrils. <i>ACS Nano</i> , 2017 , 11, 8579-8589	16.7	30
80	Exploring the binding sites and proton diffusion on insulin amyloid fibril surfaces by naphthol-based photoacid fluorescence and molecular simulations. <i>Scientific Reports</i> , 2017 , 7, 6245	4.9	11
79	Distinct Bimodal Roles of Aromatic Molecules in Controlling Gold Nanorod Growth for Biosensing. <i>Advanced Functional Materials</i> , 2017 , 27, 1700523	15.6	9
78	Online quantitative monitoring of live cell engineered cartilage growth using diffuse fiber-optic Raman spectroscopy. <i>Biomaterials</i> , 2017 , 140, 128-137	15.6	27
77	Multi-Amplified Sensing of MicroRNA by a Small DNA Fragment-Driven Enzymatic Cascade Reaction. <i>ACS Sensors</i> , 2017 , 2, 111-118	9.2	27
76	Materials science: Improving the image of nanoparticles. <i>Nature</i> , 2016 , 539, 505-506	50.4	11
75	Selective etching of injection molded zirconia-toughened alumina: Towards osseointegrated and antibacterial ceramic implants. <i>Acta Biomaterialia</i> , 2016 , 46, 308-322	10.8	26
74	Electroconductive Hydrogel Based on Functional Poly(Ethylenedioxy Thiophene). <i>Chemistry of Materials</i> , 2016 , 28, 6080-6088	9.6	81
73	Raman Spectroscopy Reveals New Insights into the Zonal Organization of Native and Tissue-Engineered Articular Cartilage. <i>ACS Central Science</i> , 2016 , 2, 885-895	16.8	66
72	Pericyte Seeded Dual Peptide Scaffold with Improved Endothelialization for Vascular Graft Tissue Engineering. <i>Advanced Healthcare Materials</i> , 2016 , 5, 3046-3055	10.1	27
71	Controlling Shear Stress in 3D Bioprinting is a Key Factor to Balance Printing Resolution and Stem Cell Integrity. <i>Advanced Healthcare Materials</i> , 2016 , 5, 326-33	10.1	390
70	Combinatorial Low-Volume Synthesis of Well-Defined Polymers by Enzyme Degassing. <i>Angewandte Chemie</i> , 2016 , 128, 4576-4579	3.6	51
69	Assembly of emulsion droplets into fibers by microfluidic wet spinning. <i>Journal of Materials Chemistry A</i> , 2016 , 4, 813-818	13	29
68	Point of care testing of phospholipase A2 group IIA for serological diagnosis of rheumatoid arthritis. <i>Nanoscale</i> , 2016 , 8, 4482-5	7.7	15
67	Material Cues as Potent Regulators of Epigenetics and Stem Cell Function. <i>Cell Stem Cell</i> , 2016 , 18, 39-5	2 18	134

66	In vitro and in vivo bone formation potential of surface calcium phosphate-coated polycaprolactone and polycaprolactone/bioactive glass composite scaffolds. <i>Acta Biomaterialia</i> , 2016 , 30, 319-333	10.8	112
65	Combinatorial Low-Volume Synthesis of Well-Defined Polymers by Enzyme Degassing. <i>Angewandte Chemie - International Edition</i> , 2016 , 55, 4500-3	16.4	97
64	A conducting polymer with enhanced electronic stability applied in cardiac models. <i>Science Advances</i> , 2016 , 2, e1601007	14.3	131
63	Controlled Sub-Nanometer Epitope Spacing in a Three-Dimensional Self-Assembled Peptide Hydrogel. <i>ACS Nano</i> , 2016 , 10, 11096-11104	16.7	29
62	Long-Range Proton Conduction across Free-Standing Serum Albumin Mats. <i>Advanced Materials</i> , 2016 , 28, 2692-8	24	52
61	Phospholipase A2 as a point of care alternative to serum amylase and pancreatic lipase. <i>Nanoscale</i> , 2016 , 8, 11834-9	7.7	6
60	Temporally degradable collagen-mimetic hydrogels tuned to chondrogenesis of human mesenchymal stem cells. <i>Biomaterials</i> , 2016 , 99, 56-71	15.6	40
59	Angular Approach Scanning Ion Conductance Microscopy. <i>Biophysical Journal</i> , 2016 , 110, 2252-65	2.9	17
58	Tailoring Mechanical Properties of Sol © el Hybrids for Bone Regeneration through Polymer Structure. <i>Chemistry of Materials</i> , 2016 , 28, 6127-6135	9.6	36
57	Harnessing the Versatility of Bacterial Collagen to Improve the Chondrogenic Potential of Porous Collagen Scaffolds. <i>Advanced Healthcare Materials</i> , 2016 , 5, 1656-66	10.1	12
56	Quantitative multi-image analysis for biomedical Raman spectroscopic imaging. <i>Journal of Biophotonics</i> , 2016 , 9, 542-50	3.1	22
55	Active loading into extracellular vesicles significantly improves the cellular uptake and photodynamic effect of porphyrins. <i>Journal of Controlled Release</i> , 2015 , 205, 35-44	11.7	295
54	Elucidating the deprotonation of polyaniline films by X-ray photoelectron spectroscopy. <i>Journal of Materials Chemistry C</i> , 2015 , 3, 7180-7186	7.1	72
53	c-Kit+ progenitors generate vascular cells for tissue-engineered grafts through modulation of the Wnt/Klf4 pathway. <i>Biomaterials</i> , 2015 , 60, 53-61	15.6	25
52	Colorimetric Detection of Small Molecules in Complex Matrixes via Target-Mediated Growth of Aptamer-Functionalized Gold Nanoparticles. <i>Analytical Chemistry</i> , 2015 , 87, 7644-52	7.8	112
51	Accelerating the Translation of Nanomaterials in Biomedicine. ACS Nano, 2015, 9, 6644-54	16.7	220
50	Integrative Self-assembly of Graphene Quantum Dot and Biopolymer into a Versatile Biosensing Toolkit. <i>Advanced Functional Materials</i> , 2015 , 25, 3183-3192	15.6	52
49	Synthesis and self-assembly of temperature-responsive copolymers based on -vinylpyrrolidone and triethylene glycol methacrylate. <i>Polymer Chemistry</i> , 2015 , 6, 4116-4122	4.9	13

(2015-2015)

Cell-derived vesicles for drug therapy and diagnostics: opportunities and challenges. <i>Nano Today</i> , 2015 , 10, 397-409	17.9	101
Biosensing platform combining label-free and labelled analysis using Bloch surface waves 2015 ,		6
Sparse feature selection methods identify unexpected global cellular response to strontium-containing materials. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 4280-5	11.5	52
Collagen-mimetic peptide-modifiable hydrogels for articular cartilage regeneration. <i>Biomaterials</i> , 2015 , 54, 213-25	15.6	110
Multivalent nanoparticle networks enable point-of-care detection of human phospholipase-A2 in serum. <i>ACS Nano</i> , 2015 , 9, 2565-2573	16.7	82
Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair. <i>Biomaterials</i> , 2015 , 52, 358-66	15.6	158
Key elements for nourishing the translational research environment. <i>Science Translational Medicine</i> , 2015 , 7, 282cm2	17.5	21
Designing dapsone polymer conjugates for controlled drug delivery. <i>Acta Biomaterialia</i> , 2015 , 27, 32-41	10.8	14
Tailoring Cellular Uptake of Conjugated Polymer Nanoparticles Using Modular Amphiphilic Peptide Capping Ligands. <i>Chemistry of Materials</i> , 2015 , 27, 6879-6889	9.6	23
Enhanced efficiency of genetic programming toward cardiomyocyte creation through topographical cues. <i>Biomaterials</i> , 2015 , 70, 94-104	15.6	65
Label-Free Detection of Tumor Angiogenesis Biomarker Angiopoietin 2 Using Bloch Surface Waves on One Dimensional Photonic Crystals. <i>Journal of Lightwave Technology</i> , 2015 , 33, 3385-3393	4	18
Designing Fluorescent Peptide Sensors with Dual Specificity for the Detection of HIV-1 Protease. <i>Chemistry of Materials</i> , 2015 , 27, 7187-7195	9.6	13
Layer-by-Layer Self-Assembly of Polymer Films and Capsules through Coiled-Coil Peptides. <i>Chemistry of Materials</i> , 2015 , 27, 5820-5824	9.6	29
A general strategy for the preparation of aligned multiwalled carbon nanotube/inorganic nanocomposites and aligned nanostructures. <i>Materials Research Bulletin</i> , 2015 , 61, 453-458	5.1	6
Mapping Local Cytosolic Enzymatic Activity in Human Esophageal Mucosa with Porous Silicon Nanoneedles. <i>Advanced Materials</i> , 2015 , 27, 5147-52	24	62
Modular and Versatile Spatial Functionalization of Tissue Engineering Scaffolds through Fiber-Initiated Controlled Radical Polymerization. <i>Advanced Functional Materials</i> , 2015 , 25, 5748-5757	15.6	34
Controlled Polymerization: Modular and Versatile Spatial Functionalization of Tissue Engineering Scaffolds through Fiber-Initiated Controlled Radical Polymerization (Adv. Funct. Mater. 36/2015). <i>Advanced Functional Materials</i> , 2015 , 25, 5718-5718	15.6	
Circular Dichroism of Amino Acids: Following the Structural Formation of Phenylalanine. <i>ChemPhysChem</i> , 2015 , 16, 2768-2774	3.2	59
	Biosensing platform combining label-free and labelled analysis using Bloch surface waves 2015, Sparse feature selection methods identify unexpected global cellular response to strontium-containing materials. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112, 4280-5 Collagen-mimetic peptide-modifiable hydrogels for articular cartilage regeneration. Biomaterials, 2015, 54, 213-25 Multivalent nanoparticle networks enable point-of-care detection of human phospholipase-A2 in serum. ACS Nano, 2015, 9, 2565-2573 Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair. Biomaterials, 2015, 52, 358-66 Key elements for nourishing the translational research environment. Science Translational Medicine, 2015, 7, 282cm2 Designing dapsone polymer conjugates for controlled drug delivery. Acta Biomaterialia, 2015, 27, 32-41 Tailoring Cellular Uptake of Conjugated Polymer Nanoparticles Using Modular Amphiphilic Peptide Capping Ligands. Chemistry of Materials, 2015, 27, 6879-6889 Enhanced efficiency of genetic programming toward cardiomyocyte creation through topographical cues. Biomaterials, 2015, 70, 94-104 Label-Free Detection of Tumor Angiogenesis Biomarker Angiopoietin 2 Using Bloch Surface Waves on One Dimensional Photonic Crystals. Journal of Lightwave Technology, 2015, 33, 3385-3393 Designing Fluorescent Peptide Sensors with Dual Specificity for the Detection of HIV-1 Protease. Chemistry of Materials, 2015, 27, 7187-7195 Layer-by-Layer Self-Assembly of Polymer Films and Capsules through Coiled-Coil Peptides. Chemistry of Materials, 2015, 27, 5820-5824 A general strategy for the preparation of aligned multiwalled carbon nanotube/inorganic nanocomposites and aligned nanostructures. Materials Research Bulletin, 2015, 61, 453-458 Mapping Local Cytosolic Enzymatic Activity in Human Esophageal Mucosa with Porous Silicon Nanoneedles. Advanced Materials, 2015, 27, 5147-52 Modular and Versatile Spatial Functionali	Biosensing platform combining label-free and labelled analysis using Bloch surface waves 2015, Sparse feature selection methods identify unexpected global cellular response to strontium-containing materials. Proceedings of the National Academy of Sciences of the United States of America, 2015, 121, 4280-5 Collagen-mimetic peptide-modifiable hydrogels for articular cartilage regeneration. Biomaterials, 2015, 54, 213-25 Multivalent nanoparticle networks enable point-of-care detection of human phospholipase-A2 in serum. ACS Nano, 2015, 9, 2565-2573 Hypoxia-mimicking bioactive glass/collagen glycosaminoglycan composite scaffolds to enhance angiogenesis and bone repair. Biomaterials, 2015, 52, 358-66 Key elements for nourishing the translational research environment. Science Translational Medicine, 2015, 7, 282cm2 Designing dapsone polymer conjugates for controlled drug delivery. Acta Biomaterialia, 2015, 27, 32-41 10.8 Tailoring Cellular Uptake of Conjugated Polymer Nanoparticles Using Modular Amphiphilic Peptide Capping Ligands. Chemistry of Materials, 2015, 27, 6879-6889 Enhanced efficiency of genetic programming toward cardiomyocyte creation through topographical cues. Biomaterials, 2015, 70, 94-104 Label-Free Detection of Tumor Angiogenesis Biomarker Angiopoietin 2 Using Bloch Surface Waves on One Dimensional Photonic Crystals. Journal of Lightwave Technology, 2015, 33, 3385-3393 Designing Fluorescent Peptide Sensors with Dual Specificity for the Detection of HIV-1 Protease. Chemistry of Materials, 2015, 27, 7187-7195 Layer-by-Layer Self-Assembly of Polymer Films and Capsules through Coiled-Coil Peptides. Chemistry of Materials, 2015, 27, 7187-7195 Layer-by-Layer Self-Assembly of Polymer Films and Capsules through Coiled-Coil Peptides. Chemistry of Materials, 2015, 27, 7187-7195 Layer-by-Layer Self-Assembly of Polymer Films and Capsules through Coiled-Coil Peptides. Chemistry of Materials, 2015, 27, 7187-7195 Layer-by-Layer Self-Assembly of Polymer Films and Capsules through Coiled-Coil Peptides.

30	Fibres and cellular structures preserved in 75-million-year-old dinosaur specimens. <i>Nature Communications</i> , 2015 , 6, 7352	17.4	59
29	A structural and physical study of sol-gel methacrylate-silica hybrids: intermolecular spacing dictates the mechanical properties. <i>Physical Chemistry Chemical Physics</i> , 2015 , 17, 29124-33	3.6	21
28	Gold-silica quantum rattles for multimodal imaging and therapy. <i>Proceedings of the National Academy of Sciences of the United States of America</i> , 2015 , 112, 1959-64	11.5	94
27	Tailoring of mechanical properties of derivatized natural polyamino acids through esterification and tensile deformation. <i>RSC Advances</i> , 2014 , 4, 2096-2102	3.7	9
26	Nanoparticle Growth via Concentration Gradients Generated by Enzyme Nanopatterns. <i>Advanced Functional Materials</i> , 2014 , 24, 3692-3698	15.6	6
25	Bionanotechnology. Colloidal nanoparticles as advanced biological sensors. <i>Science</i> , 2014 , 346, 1247390	033.3	714
24	Cardiovascular calcification violet pearl. <i>Lancet, The</i> , 2014 , 384, 1294	40	4
23	Changing the mindset in life sciences toward translation: a consensus. <i>Science Translational Medicine</i> , 2014 , 6, 264cm12	17.5	31
22	Highly Controlled Open Vessel RAFT Polymerizations by Enzyme Degassing. <i>Macromolecules</i> , 2014 , 47, 8541-8547	5.5	150
21	Crystallization: Nanoparticle Growth via Concentration Gradients Generated by Enzyme Nanopatterns (Adv. Funct. Mater. 24/2014). <i>Advanced Functional Materials</i> , 2014 , 24, 3654-3654	15.6	
20	Melt-electrospun polycaprolactone strontium-substituted bioactive glass scaffolds for bone regeneration 2014 , 102, 3140		2
19	Amphiphilic amino acids: a key to adsorbing proteins to nanopatterned surfaces?. <i>Chemical Science</i> , 2013 , 4, 928-937	9.4	45
18	Stem Cells: Nanoscale Topography and Chemistry Affect Embryonic Stem Cell Self-Renewal and Early Differentiation (Adv. Healthcare Mater. 12/2013). <i>Advanced Healthcare Materials</i> , 2013 , 2, 1538-15	538.1	
17	Hybrid processes in enzymatically gelled gelatin: impact on , macroscopic properties and cellular response. <i>Soft Matter</i> , 2013 , 9, 6986-6999	3.6	29
16	Latent Transforming Growth Factor-beta1 Functionalised Electrospun Scaffolds Promote Human Cartilage Differentiation: Towards an Engineered Cartilage Construct. <i>Archives of Plastic Surgery</i> , 2013 , 40, 676-86	1.6	11
15	Bio-inspired materials for biosensing and tissue engineering. <i>Polymer International</i> , 2012 , 61, 680-685	3.3	9
14	Quantum-Dot-Based FRET Detection of Histone Acetyltransferase Activity. <i>Angewandte Chemie</i> , 2011 , 123, 3479-3482	3.6	15
13	Supramolecular replication of peptide and DNA patterned arrays. <i>Journal of Materials Chemistry</i> , 2010 , 20, 68-70		3

LIST OF PUBLICATIONS

12	Silica-Gelatin Hybrids with Tailorable Degradation and Mechanical Properties for Tissue Regeneration. <i>Advanced Functional Materials</i> , 2010 , 20, 3835-3845	15.6	179
11	Biomaterial-Related Approaches: Surface Structuring 2009 , 469-484		8
10	Lactide polymerization co-initiated by carbohydrate esters and pyranoses. <i>Journal of Polymer Science Part A</i> , 2008 , 46, 4352-4362	2.5	16
9	Peptide-based stimuli-responsive biomaterials. <i>Soft Matter</i> , 2006 , 2, 822-835	3.6	497
8	Exploring and engineering the cell surface interface. <i>Science</i> , 2005 , 310, 1135-8	33.3	2149
7	Biomedical hydrogels 2005 , 107-115		8
6	Degradation Behavior of Novel Poly(Hydroxy acid)-Derived Polyesters. <i>Materials Research Society Symposia Proceedings</i> , 2004 , 823, W11.10.1		
5	On the dynamic behaviour of the forced dissociation of ligandEeceptor pairs. <i>Perkin Transactions II RSC</i> , 2000 , 5-8		14
4	ECM Interactions with Cells from the Macro- to Nanoscale223-260		4
3	Design and clinical application of injectable hydrogels for musculoskeletal therapy. <i>Bioengineering and Translational Medicine</i> ,	14.8	1
2	Developing Atom Probe Tomography to Characterize Sr-Loaded Bioactive Glass for Bone Scaffolding. <i>Microscopy and Microanalysis</i> ,1-11	0.5	1
1	Artificial Antigen Presenting Cells for Detection and Desensitization of Autoreactive T cells Associated with Type 1 Diabetes. <i>Nano Letters</i> ,	11.5	O