StanisÅ,aw Rabiej

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2943789/publications.pdf Version: 2024-02-01

STANISÅ AM PARIEL

#	Article	IF	CITATIONS
1	The effect of macromolecular architecture of ethylene copolymers with multi-alkenylsilsesquioxane on morphological, rheological and dynamic mechanical behavior. Polymer, 2021, 212, 123172.	3.8	4
2	The role of an objective function in the mathematical modelling of wide-angle X-ray diffraction curves of semi-crystalline polymers. Acta Crystallographica Section A: Foundations and Advances, 2021, 77, 534-547.	0.1	0
3	Study and evaluation of dispersion of polyhedral oligomeric silsesquioxane and silica filler in polypropylene composites. Polymer Composites, 2019, 40, 1354-1364.	4.6	10
4	Fabrication of a new PVDF/SbSI nanowire composite for smart wearable textile. Polymer, 2019, 180, 121729.	3.8	22
5	Functionalized siloxaneâ€silsesquioxane resins and polypropyleneâ€based composites: Morphological, structural, thermal, and mechanical properties. Polymer Composites, 2019, 40, 3101-3114.	4.6	3
6	Study of polyethylene nanocomposites with polyhedral oligomeric silsesquioxane nanofillers—from structural characteristics to mechanical properties and processability. Polymer Composites, 2019, 40, E350.	4.6	7
7	Ethylene/POSS copolymerization behavior of postmetallocene catalysts and copolymer characteristics. Journal of Polymer Science Part A, 2017, 55, 3918-3934.	2.3	12
8	Nanocomposite Precursor Polyacrylonitrile Fibers for Medical Applications. Advances in Polymer Technology, 2016, 35, 190-197.	1.7	4
9	An intensity superposition model to fit the small angle X-ray scattering of semicrystalline polymers and its application to the monitoring of non-isothermal crystallization. European Polymer Journal, 2015, 69, 247-259.	5.4	1
10	Calcium alginate fibers containing metallic nanoadditives. Journal of Applied Polymer Science, 2014, 131, .	2.6	4
11	Sodium Alginate Fibers Containing Nanosilver. Advances in Polymer Technology, 2014, 33, .	1.7	5
12	High crystallinity polyethylene obtained in biphasic polymerization using pyridinium chloroaluminate ionic liquid. Journal of Polymer Research, 2014, 21, 1.	2.4	8
13	New generation butyric-acetate copolymer of chitin (BOC) fibres with ceramic HAp and TCP nanoadditives for the manufacture of fibrous composite materials. Fibers and Polymers, 2013, 14, 1107-1117.	2.1	3
14	Nanocomposite polyvinyl alcohol fibers for medical applications. Journal of Applied Polymer Science, 2011, 120, 1234-1244.	2.6	6
15	The influence of fiber formation conditions on the structure and properties of nanocomposite alginate fibers containing tricalcium phosphate or montmorillonite. Polymer Composites, 2010, 31, 1321-1331.	4.6	18
16	Effect of formation conditions on the structure and properties of nanocomposite alginate fibers. Journal of Applied Polymer Science, 2009, 114, 70-82.	2.6	19
17	Strength properties of polyimideamide nanocomposite fibers in terms of their porous and supermolecular structure. Journal of Applied Polymer Science, 2007, 104, 339-344.	2.6	10
18	Comparative analysis of the structural parameters and strength properties of polyacrylonitrile fibers containing ceramic nanoadditives. Journal of Applied Polymer Science, 2007, 105, 2346-2350.	2.6	7

StanisÅ, aw Rabiej

#	Article	IF	CITATIONS
19	Analysis of the effect of the amount and type of montmorillonite on the supermolecular structure, porosity, and properties of polyimidoamide fibres. Journal of Applied Polymer Science, 2007, 105, 1937-1946.	2.6	3
20	Analysis of the structural parameters of polyacrylonitrile fibers containing nanohydroxyapatite. Journal of Applied Polymer Science, 2006, 101, 760-765.	2.6	18
21	INVESTIGATIONS OF THE CRYSTALLINITY OF PA-6/SPS BLENDS BY X-RAY DIFFRACTION AND DSC METHODS. European Polymer Journal, 1997, 33, 1031-1039.	5.4	19
22	Determination of the crystallinity of polymer blends by an x-ray diffraction method. European Polymer Journal, 1993, 29, 625-633.	5.4	11
23	Investigations of the crystallinity of polyamide-6 fibers by two x-ray diffraction methods. Journal of Applied Polymer Science, 1992, 46, 1205-1214.	2.6	8
24	A comparison of two X-ray diffraction procedures for crystallinity determination. European Polymer Journal, 1991, 27, 947-954.	5.4	92
25	Determination of micropore concentration and size distribution in carbon fibres by the saxs method. Angewandte Makromolekulare Chemie, 1991, 190, 187-200.	0.2	7
26	Ladder-type copolymers—III. Saxs and waxs investigations of the supermolecular structure. European Polymer Journal, 1988, 24, 585-590.	5.4	3
27	Ladder-type copolymers—l. Investigation of the molecular structure. European Polymer Journal, 1988, 24, 177-181.	5.4	7
28	Ladder-type copolymers—II. Thermal investigations. European Polymer Journal, 1988, 24, 183-186.	5.4	6
29	SAXS and WAXD, Time Resolved Investigations of the Morphology of Polyethylenes. Solid State Phenomena, 0, 163, 27-30.	0.3	1
30	Modeling of Polymer Structure with the Use of SAXSDAT Computer Program. Solid State Phenomena, 0, 203-204, 185-188.	0.3	0