Ita Junkar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2943628/publications.pdf Version: 2024-02-01

Ιτλ Ιιινικλα

#	Article	IF	CITATIONS
1	Biocompatibility and Mechanical Stability of Nanopatterned Titanium Films on Stainless Steel Vascular Stents. International Journal of Molecular Sciences, 2022, 23, 4595.	4.1	2
2	Toward novel antibacterial surfaces used for medical implants. Advances in Biomembranes and Lipid Self-Assembly, 2022, , 77-94.	0.6	1
3	The Influence of Glow and Afterglow Cold Plasma Treatment on Biochemistry, Morphology, and Physiology of Wheat Seeds. International Journal of Molecular Sciences, 2022, 23, 7369.	4.1	13
4	Modulation of Differentiation of Embryonic Stem Cells by Polypyrrole: The Impact on Neurogenesis. International Journal of Molecular Sciences, 2021, 22, 501.	4.1	8
5	Cold Plasma Systems and Their Application in Surface Treatments for Medicine. Molecules, 2021, 26, 1903.	3.8	60
6	Use of Plasma Technologies for Antibacterial Surface Properties of Metals. Molecules, 2021, 26, 1418.	3.8	29
7	The Oleofobization of Paper via Plasma Treatment. Polymers, 2021, 13, 2148.	4.5	3
8	Mechanical and Electrical Interaction of Biological Membranes with Nanoparticles and Nanostructured Surfaces. Membranes, 2021, 11, 533.	3.0	8
9	Response of Two Different Wheat Varieties to Glow and Afterglow Oxygen Plasma. Plants, 2021, 10, 1728.	3.5	12
10	Bio-Performance of Hydrothermally and Plasma-Treated Titanium: The New Generation of Vascular Stents. International Journal of Molecular Sciences, 2021, 22, 11858.	4.1	11
11	Strategies for Improving Antimicrobial Properties of Stainless Steel. Materials, 2020, 13, 2944.	2.9	29
12	Extracellular Vesicle Isolation Yields Increased by Low-Temperature Gaseous Plasma Treatment of Polypropylene Tubes. Polymers, 2020, 12, 2363.	4.5	4
13	Effects of Nonthermal Plasma on Morphology, Genetics and Physiology of Seeds: A Review. Plants, 2020, 9, 1736.	3.5	59
14	PECVD of Hexamethyldisiloxane Coatings Using Extremely Asymmetric Capacitive RF Discharge. Materials, 2020, 13, 2147.	2.9	9
15	Crystallized TiO2 Nanosurfaces in Biomedical Applications. Nanomaterials, 2020, 10, 1121.	4.1	40
16	Titanium Dioxide Nanotube Arrays for Cardiovascular Stent Applications. ACS Omega, 2020, 5, 7280-7289.	3.5	35
17	Exploring the Effects of Cold Plasma on Wheat Seed Surface, Germination and Growth. Biology and Life Sciences Forum, 2020, 4, .	0.6	0
18	Bio-Polymers in the World of Plasma: Effects of Cold Plasma on Seed Surface. , 2020, 69, .		0

Ita Junkar

#	Article	IF	CITATIONS
19	Effect of Oxygen Plasma on Sprout and Root Growth, Surface Morphology and Yield of Garlic. Plants, 2019, 8, 462.	3.5	17
20	Viscosity of Plasma as a Key Factor in Assessment of Extracellular Vesicles by Light Scattering. Cells, 2019, 8, 1046.	4.1	18
21	Preparation of Hierarchically Structured Polystyrene Surfaces with Superhydrophobic Properties by Plasma-Assisted Fluorination. Coatings, 2019, 9, 201.	2.6	16
22	Plasma-Induced Crystallization of TiO2 Nanotubes. Materials, 2019, 12, 626.	2.9	28
23	In-Vitro Hemocompatibility of Polyaniline Functionalized by Bioactive Molecules. Polymers, 2019, 11, 1861.	4.5	7
24	The effect of composition of a polymeric coating on the biofilm formation of bacteria and filamentous fungi. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019, 68, 152-159.	3.4	3
25	The biocompatibility of polyaniline and polypyrrole: A comparative study of their cytotoxicity, embryotoxicity and impurity profile. Materials Science and Engineering C, 2018, 91, 303-310.	7.3	96
26	The Importance of Antibacterial Surfaces in Biomedical Applications. Advances in Biomembranes and Lipid Self-Assembly, 2018, 28, 115-165.	0.6	28
27	Electrochemical Biosensor Based on TiO 2 Nanomaterials for Cancer Diagnostics. Advances in Biomembranes and Lipid Self-Assembly, 2018, , 63-105.	0.6	25
28	Improved electron–hole separation and migration in anatase TiO ₂ nanorod/reduced graphene oxide composites and their influence on photocatalytic performance. Nanoscale, 2017, 9, 4578-4592.	5.6	81
29	Cell-compatible conducting polyaniline films prepared in colloidal dispersion mode. Colloids and Surfaces B: Biointerfaces, 2017, 157, 309-316.	5.0	9
30	Interaction of nanostructured TiO2 biointerfaces with stem cells and biofilm-forming bacteria. Materials Science and Engineering C, 2017, 77, 500-507.	7.3	11
31	Effect of H2S Plasma Treatment on the Surface Modification of a Polyethylene Terephthalate Surface. Materials, 2016, 9, 95.	2.9	14
32	Improved Sprout Emergence of Garlic Cloves by Plasma Treatment. Plasma Medicine, 2016, 6, 325-338.	0.6	6
33	Binding of human coronary artery endothelial cells to plasmaâ€ŧreated titanium dioxide nanotubes of different diameters. Journal of Biomedical Materials Research - Part A, 2016, 104, 1113-1120.	4.0	16
34	Enhanced biocompatibility of TiO2surfaces by highly reactive plasma. Journal Physics D: Applied Physics, 2016, 49, 244002.	2.8	23
35	Developing a biomaterial interface based on poly(lactic acid) via plasma-assisted covalent anchorage of d-glucosamine and its potential for tissue regeneration. Colloids and Surfaces B: Biointerfaces, 2016, 148, 59-65.	5.0	10
36	Wettability Switch of Anodic Titanium Dioxide Nanotubes with Various Diameters. Biophysical Journal, 2016, 110, 339a.	0.5	2

Ita Junkar

#	Article	IF	CITATIONS
37	Influence of various sterilization procedures on TiO2 nanotubes used for biomedical devices. Bioelectrochemistry, 2016, 109, 79-86.	4.6	43
38	Modification of PET surface properties using extremely non-equilibrium oxygen plasma. Open Chemistry, 2015, 13, .	1.9	15
39	Growth of a Novel Nanostructured ZnO Urchin: Control of Cytotoxicity and Dissolution of the ZnO Urchin. Nanoscale Research Letters, 2015, 10, 441.	5.7	5
40	On the Hydrophilicity and Water Resistance Effect of Styreneâ€Acrylonitrile Copolymer Treated by CF ₄ and O ₂ Plasmas. Plasma Processes and Polymers, 2015, 12, 1075-1084.	3.0	13
41	Application of extremely non-equilibrium plasmas in the processing of nano and biomedical materials. Plasma Sources Science and Technology, 2015, 24, 015026.	3.1	34
42	Blood coagulation and platelet adhesion on polyaniline films. Colloids and Surfaces B: Biointerfaces, 2015, 133, 278-285.	5.0	19
43	Wettability studies of topologically distinct titanium surfaces. Colloids and Surfaces B: Biointerfaces, 2015, 129, 47-53.	5.0	108
44	Adherence of oral streptococci to nanostructured titanium surfaces. Dental Materials, 2015, 31, 1460-1468.	3.5	75
45	Formation of Nanocones on Highly Oriented Pyrolytic Graphite by Oxygen Plasma. Materials, 2014, 7, 2014-2029.	2.9	7
46	Morphology Transformations of Platelets on Plasma Activated Surfaces. Plasma Processes and Polymers, 2014, 11, 596-605.	3.0	15
47	Plasma treatment of amorphous and semicrystalline polymers for improved biocompatibility. Vacuum, 2013, 98, 111-115.	3.5	24
48	Aging of plasma treated surfaces and their effects on platelet adhesion and activation. Surface and Coatings Technology, 2012, 213, 98-104.	4.8	51
49	Hemocompatible Poly(ethylene terephthalate) Polymer Modified via Reactive Plasma Treatment. Japanese Journal of Applied Physics, 2011, 50, 08JF02.	1.5	12
50	Hemocompatible Poly(ethylene terephthalate) Polymer Modified via Reactive Plasma Treatment. Japanese Journal of Applied Physics, 2011, 50, 08JF02.	1.5	7
51	A Physicochemical Approach to Render Antibacterial Surfaces on Plasmaâ€Treated Medicalâ€Grade PVC: Irgasan Coating. Plasma Processes and Polymers, 2010, 7, 504-514.	3.0	60
52	The Role of Crystallinity on Polymer Interaction with Oxygen Plasma. Plasma Processes and Polymers, 2009, 6, 667-675.	3.0	99
53	Influence of oxygen and nitrogen plasma treatment on polyethylene terephthalate (PET) polymers. Vacuum, 2009, 84, 83-85.	3.5	133
54	Surface modification of polyester by oxygen―and nitrogenâ€plasma treatment. Surface and Interface Analysis, 2008, 40, 1444-1453.	1.8	249