Christian Demitri

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2943472/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	From tissue engineering to mosquitoes: biopolymers as tools for developing a novel biomimetic approach to pest management/vector control. Parasites and Vectors, 2022, 15, 79.	1.0	7
2	Proof of Concept of Biopolymer Based Hydrogels as Biomimetic Oviposition Substrate to Develop Tiger Mosquitoes (Aedes albopictus) Cost-Effective Lure and Kill Ovitraps. Bioengineering, 2022, 9, 267.	1.6	2
3	Chitosan/PEGDA based scaffolds as bioinspired materials to control in vitro angiogenesis. Materials Science and Engineering C, 2021, 118, 111420.	3.8	14
4	Enhancing Bioactivity of Hydroxyapatite Scaffolds Using Fibrous Type I Collagen. Frontiers in Bioengineering and Biotechnology, 2021, 9, 631177.	2.0	18
5	Angiogenic Properties of Concentrated Growth Factors (CGFs): The Role of Soluble Factors and Cellular Components. Pharmaceutics, 2021, 13, 635.	2.0	19
6	Analysis of CGF Biomolecules, Structure and Cell Population: Characterization of the Stemness Features of CGF Cells and Osteogenic Potential. International Journal of Molecular Sciences, 2021, 22, 8867.	1.8	15
7	Freeze-drying of Beauveria bassiana suspended in Hydroxyethyl cellulose based hydrogel as possible method for storage: Evaluation of survival, growth and stability of conidial concentration before and after processing. Results in Engineering, 2021, 12, 100283.	2.2	9
8	A possible method to avoid skin effect in polymeric scaffold produced through thermally induced phase separation. Results in Engineering, 2021, 12, 100282.	2.2	7
9	Biomimetic cellulose-based superabsorbent hydrogels for treating obesity. Scientific Reports, 2021, 11, 21394.	1.6	6
10	Mechanical and Biological Properties of Magnesium- and Silicon-Substituted Hydroxyapatite Scaffolds. Materials, 2021, 14, 6942.	1.3	8
11	Assessment of Cytocompatibility and Anti-Inflammatory (Inter)Actions of Genipin-Crosslinked Chitosan Powders. Biology, 2020, 9, 159.	1.3	4
12	Cellulose Acetate and Cardanol Based Seed Coating for Intraspecific Weeding Coupled with Natural Herbicide Spraying. Journal of Polymers and the Environment, 2020, 28, 2893-2904.	2.4	13
13	Osteoinductive and anti-inflammatory properties of chitosan-based scaffolds for bone regeneration. Materials Science and Engineering C, 2019, 105, 110046.	3.8	40
14	Investigating the Structure-Related Properties of Cellulose-Based Superabsorbent Hydrogels. , 2019, , .		4
15	LBP-33-Gelesis superabsorbent hydrogel prevents hepatic steatosis in a high fat diet-induced NAFLD pre-clinical model. Journal of Hepatology, 2019, 70, e157-e158.	1.8	2
16	Release of VEGF from Dental Implant Surface (IML® Implant) Coated with Concentrated Growth Factors (CGF) and the Liquid Phase of CGF (LPCGF): In Vitro Results and Future Expectations. Applied Sciences (Switzerland), 2019, 9, 2114.	1.3	9
17	Bioactivation Routes of Gelatin-Based Scaffolds to Enhance at Nanoscale Level Bone Tissue Regeneration. Frontiers in Bioengineering and Biotechnology, 2019, 7, 27.	2.0	50
18	Mono- and Bi-Phasic Cellulose Acetate Micro-Vectors for Anti-Inflammatory Drug Delivery. Pharmaceutics, 2019, 11, 87.	2.0	11

CHRISTIAN DEMITRI

#	Article	IF	CITATIONS
19	A Randomized, Doubleâ€Blind, Placebo ontrolled Study of Gelesis100: A Novel Nonsystemic Oral Hydrogel for Weight Loss. Obesity, 2019, 27, 205-216.	1.5	102
20	Rheological analysis of thermo-responsive alginate/PNIPAAm graft copolymers synthesized by gamma radiation. Radiation Physics and Chemistry, 2019, 156, 38-43.	1.4	9
21	Biodegradable poly(lactic acid)/celluloseâ€based superabsorbent hydrogel composite material as water and fertilizer reservoir in agricultural applications. Journal of Applied Polymer Science, 2019, 136, 47546.	1.3	44
22	Gelatin/nanoâ€hydroxyapatite hydrogel scaffold prepared by solâ€gel technology as filler to repair bone defects. Journal of Biomedical Materials Research - Part A, 2018, 106, 2007-2019.	2.1	52
23	Fast synthesis of poly(ethylene glycol) diacrylate cryogels via UV irradiation. Materials Letters, 2018, 218, 305-308.	1.3	19
24	Core/shell celluloseâ€based microspheres for oral administration of Ketoprofen Lysinate. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2018, 106, 2636-2644.	1.6	16
25	Reflectometric System for Continuous and Automated Monitoring of Irrigation in Agriculture. Advances in Agriculture, 2018, 2018, 1-10.	0.3	1
26	A Feasibility Study of Processing Polydimethylsiloxane–Sodium Carboxymethylcellulose Composites by a Low-Cost Fused Deposition Modeling 3D Printer. Materials, 2018, 11, 1578.	1.3	22
27	Potential of Electrospun Poly(3-hydroxybutyrate)/Collagen Blends for Tissue Engineering Applications. Journal of Healthcare Engineering, 2018, 2018, 1-13.	1.1	29
28	Effect of a nonsystemic, orally administered hydrogel, GS100, on metformin pharmacokinetics. Canadian Journal of Physiology and Pharmacology, 2018, 96, 1127-1131.	0.7	7
29	Effect of inorganic and organic bioactive signals decoration on the biological performance of chitosan scaffolds for bone tissue engineering. Journal of Materials Science: Materials in Medicine, 2018, 29, 62.	1.7	8
30	Determination of absorption and structural properties of cellulose-based hydrogel via ultrasonic pulse-echo time-of-flight approach. Cellulose, 2018, 25, 4331-4343.	2.4	9
31	Encapsulation of Lactobacillus kefiri in alginate microbeads using a double novel aerosol technique. Materials Science and Engineering C, 2017, 77, 548-555.	3.8	12
32	A bio-based composite material for water remediation from oily contaminants. Materials and Design, 2017, 134, 374-382.	3.3	25
33	Novel PHB/Olive mill wastewater residue composite based film: Thermal, mechanical and degradation properties. Journal of Environmental Chemical Engineering, 2017, 5, 6001-6007.	3.3	13
34	Microwave-induced porosity and bioactivation of chitosan-PEGDA scaffolds: morphology, mechanical properties and osteogenic differentiation. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 86-98.	1.3	5
35	Enhancement of leak detection in pipelines through timeâ€domain reflectometry/ground penetrating radar measurements. IET Science, Measurement and Technology, 2017, 11, 696-702.	0.9	19
36	Effects of Genipin Concentration on Cross-Linked Chitosan Scaffolds for Bone Tissue Engineering: Structural Characterization and Evidence of Biocompatibility Features. International Journal of Polymer Science, 2017, 2017, 1-8.	1.2	66

CHRISTIAN DEMITRI

#	Article	IF	CITATIONS
37	Correction of MHS Viscosimetric Constants upon Numerical Simulation of Temperature Induced Degradation Kinetic of Chitosan Solutions. Polymers, 2016, 8, 210.	2.0	9
38	Study on the degradation of chitosan slurries. Results in Physics, 2016, 6, 728-729.	2.0	8
39	Nanostructured active chitosan-based films for food packaging applications: Effect of graphene stacks on mechanical properties. Measurement: Journal of the International Measurement Confederation, 2016, 90, 418-423.	2.5	58
40	Accuracy improvement in the TDR-based localization of water leaks. Results in Physics, 2016, 6, 594-598.	2.0	10
41	Synthesis of Chitosan-Based Sub-Micrometric Particles by Simple Coacervation. IEEE Nanotechnology Magazine, 2016, 15, 884-889.	1.1	2
42	Celluloseâ€based porous scaffold for bone tissue engineering applications: Assessment of h <scp>MSC</scp> proliferation and differentiation. Journal of Biomedical Materials Research - Part A, 2016, 104, 726-733.	2.1	32
43	Effect of citric acid crosslinking celluloseâ€based hydrogels on osteogenic differentiation. Journal of Biomedical Materials Research - Part A, 2015, 103, 2045-2056.	2.1	108
44	Preparation and Characterization of EG-Chitosan Nanocomposites via Direct Exfoliation: A Green Methodology. Polymers, 2015, 7, 2584-2594.	2.0	13
45	Graphene reinforced Chitosan-Cinnamaldehyde derivatives films: antifungal activity and mechanical properties. , 2015, , .		1
46	Preliminary assessment of chitosan nanoparticles for growth factor delivery. , 2015, , .		2
47	Genipinâ€crossâ€linked chitosanâ€based hydrogels: Reaction kinetics and structureâ€related characteristics. Journal of Applied Polymer Science, 2015, 132, .	1.3	88
48	Complete Valorization of Olive Mill Wastewater through an Integrated Process for Poly-3-hydroxybutyrate Production. Journal of Life Sciences (Libertyville, Ill), 2015, 9, .	0.2	0
49	Experimental Assessment of the Use of a Novel Superabsorbent polymer (SAP) for the Optimization of Water Consumption in Agricultural Irrigation Process. Water (Switzerland), 2014, 6, 2056-2069.	1.2	87
50	Preparation and characterization of cellulose-based foams via microwave curing. Interface Focus, 2014, 4, 20130053.	1.5	41
51	Development of Semi- and Grafted Interpenetrating Polymer Networks Based on Poly(Ethylene Glycol) Diacrylate and Collagen. Journal of Applied Biomaterials and Functional Materials, 2014, 12, 183-192.	0.7	13
52	Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates. Burns and Trauma, 2014, 2, 153.	0.7	235
53	Potential of Cellulose-Based Superabsorbent Hydrogels as Water Reservoir in Agriculture. International Journal of Polymer Science, 2013, 2013, 1-6.	1.2	178
54	Proliferation and Osteoblastic Differentiation of hMSCs on Cellulose-Based Hydrogels. Journal of Applied Biomaterials and Functional Materials, 2012, 10, 302-307.	0.7	39

CHRISTIAN DEMITRI

#	Article	IF	CITATIONS
55	Echographic detectability of optoacoustic signals from low-concentration PEG-coated gold nanorods. International Journal of Nanomedicine, 2012, 7, 4373.	3.3	20
56	Hepatic Vessel Segmentation for 3D Planning of Liver Surgery. Academic Radiology, 2011, 18, 461-470.	1.3	57
57	Development and characterization of celluloseâ€based hydrogels for use as dietary bulking agents. Journal of Applied Polymer Science, 2010, 115, 1438-1444.	1.3	39
58	Biodegradable Cellulose-based Hydrogels: Design and Applications. Materials, 2009, 2, 353-373.	1.3	660
59	Full experimental modelling of a liver tissue mimicking phantom for medical ultrasound studies employing different hydrogels. Journal of Materials Science: Materials in Medicine, 2009, 20, 983-989.	1.7	32
60	Experimental investigation and theoretical modelling of the nonlinear acoustical behaviour of a liver tissue and comparison with a tissue mimicking hydrogel. Journal of Materials Science: Materials in Medicine, 2008, 19, 899-906.	1.7	19
61	Hydrogel based tissue mimicking phantom for <i>inâ€vitro</i> ultrasound contrast agents studies. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 338-345.	1.6	42
62	Novel superabsorbent celluloseâ€based hydrogels crosslinked with citric acid. Journal of Applied Polymer Science, 2008, 110, 2453-2460.	1.3	386
63	Acrylic-based hydrogel phantom forin vitroultrasound contrast agent characterization. Virtual and Physical Prototyping, 2007, 2, 191-196.	5.3	3
64	Experimental Investigations of Nonlinearities and Destruction Mechanisms of an Experimental Phospholipid-Based Ultrasound Contrast Agent. Investigative Radiology, 2007, 42, 95-104.	3.5	29
65	Low microbubble concentrations signal enhancement varying echograph electrical power. , 2005, , .		0
66	Ultrasound harmonic behaviour of artificial tissues. , 0, , .		1