List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2942861/publications.pdf Version: 2024-02-01

ROHEUN TANC

#	Article	IF	CITATIONS
1	Application of two-dimensional layered Mo-MOF@ppy with high valency molybdenum in lithium-ion batteries. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 632, 127810.	2.3	22
2	A novel cobalt chloride hydrate modified Co-MOF derived carbon microspheres as anode materials for lithium ion batteries. Chemical Engineering Journal, 2022, 433, 133568.	6.6	27
3	Cobalt-doped TaOCl3 nanoparticles/carbon compounds with advanced specific capacity for lithium-ion batteries. Journal of Alloys and Compounds, 2022, 897, 163193.	2.8	10
4	A variety of carbon-coated FeS2 anodes: FeS2@CNT with excellent lithium-ion storage performance. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2022, 637, 128226.	2.3	11
5	One-step synthesis based on non-aqueous sol-gel conductive polymer-coated SnO2 nanoparticles as advanced anode materials for lithium-ion batteries. Journal of Alloys and Compounds, 2022, 899, 163274.	2.8	12
6	MoP ₂ /C@rGO synthesised by phosphating the molybdenum-based metal organic framework and GO coating with excellent lithium ion storage performance. Dalton Transactions, 2022, 51, 6390-6398.	1.6	3
7	Nitrogen-Doped Porous Ag–C@Co ₃ O ₄ Nanocomposite for Boosting Lithium Ion Batteries. Energy & Fuels, 2022, 36, 2861-2871.	2.5	11
8	Highly dispersed CuO nanoparticle on ZIF-4 framework as anode material for LIBs. Journal of Alloys and Compounds, 2022, 914, 165316.	2.8	14
9	Review of metal oxides as anode materials for lithium-ion batteries. Dalton Transactions, 2022, 51, 9584-9590.	1.6	26
10	Molybdenum disulfide synthesized by molybdenum-based metal organic framework with high activity for sodium ion battery. Electrochimica Acta, 2021, 365, 137353.	2.6	33
11	CoS2–MnS@Carbon nanoparticles derived from metal–organic framework as a promising anode for lithium-ion batteries. Journal of Alloys and Compounds, 2021, 854, 157315.	2.8	36
12	Several carbon-coated Ga ₂ O ₃ anodes: efficient coating of reduced graphene oxide enhanced the electrochemical performance of lithium ion batteries. Dalton Transactions, 2021, 50, 3660-3670.	1.6	14
13	Superior lithium-storage properties derived from a g-C ₃ N ₄ -embedded honeycomb-shaped meso@mesoporous carbon nanofiber anode loaded with Fe ₂ O ₃ for Li-ion batteries. Dalton Transactions, 2021, 50, 9775-9786.	1.6	15
14	Metal–Organic Aerogel Assisted Reduced Graphene Oxide Coated Sulfur as a Cathode Material for Lithium Sulfur Batteries. Energy & Fuels, 2021, 35, 2742-2749.	2.5	13
15	Vanadium Metaphosphate V(PO ₃) ₃ Derived from Vâ€MOF as a Novel Anode for Lithiumâ€Ion Batteries. ChemistrySelect, 2021, 6, 8150-8157.	0.7	11
16	Self-healable metal-organic gel membranes as anodes with high lithium storage. Electrochimica Acta, 2021, 386, 138334.	2.6	20
17	Recent Breakthroughs in the Bottleneck of Cathode Materials for Li–S Batteries. Energy & Fuels, 2021, 35, 15455-15471.	2.5	25
18	A novel SnS2 nanomaterial based on nitrogen-doped cubic-like carbon skeleton with excellent lithium storage. Journal of Alloys and Compounds, 2021, 883, 160834.	2.8	17

#	Article	IF	CITATIONS
19	Synthesize of 3D-conductive supramolecular gel and derived N-doped Fe–C as high-performance lithium-ion battery anodes. Vacuum, 2021, 193, 110532.	1.6	2
20	Layered Niobium Oxide Hydrate Anode with Excellent Performance for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2021, 13, 51057-51065.	4.0	21
21	Novel self-supporting multilevel-3D porous NiO nanowires with metal-organic gel coating via "like dissolves like―to trigger high-performance binder-free lithium-ion batteries. Microporous and Mesoporous Materials, 2021, 328, 111483.	2.2	8
22	Preparation and Electrochemical Performance of CoSe ₂ â^'MnSe ₂ for Application in Lithiumâ€ion Batteries. ChemElectroChem, 2020, 7, 782-791.	1.7	22
23	Flocculent Cu Caused by the Jahn–Teller Effect Improved the Performance of Mg-MOF-74 as an Anode Material for Lithium-Ion Batteries. ACS Applied Materials & Interfaces, 2020, 12, 52864-52872.	4.0	50
24	Preparation of promising anode materials with Sn-MOF as precursors for superior lithium and sodium storage. Journal of Alloys and Compounds, 2020, 842, 155605.	2.8	42
25	Bismuth Sulfide–Integrated Carbon Derived from Organic Ligands as a Superior Anode for Sodium Storage. Energy Technology, 2019, 7, 1900668.	1.8	8
26	One-step synthesis of MOF-derived Ga/Ga ₂ O ₃ @C dodecahedra as an anode material for high-performance lithium-ion batteries. Dalton Transactions, 2019, 48, 12386-12390.	1.6	15
27	A highly Meso@Microporous carbon-supported Antimony sulfide nanoparticles coated by conductive polymer for high-performance lithium and sodium ion batteries. Electrochimica Acta, 2019, 321, 134699.	2.6	22
28	A novel carbon-coated Ga2S3 anode material derived from post-synthesis modified MOF for high performance lithium ion and sodium ion batteries. Electrochimica Acta, 2019, 322, 134790.	2.6	26
29	Rodlike FeSe2–C derived from metal organic gel wrapped with reduced graphene as an anode material with excellent performance for lithium-ion batteries. Electrochimica Acta, 2019, 323, 134817.	2.6	34
30	Carbon-coated bismuth nanospheres derived from Bi-BTC as a promising anode material for lithium storage. Electrochimica Acta, 2019, 325, 134927.	2.6	39
31	MOF-derived Cu–C loaded with SnOx as a superior anode material for lithium-ion batteries. Electrochimica Acta, 2019, 326, 134960.	2.6	24
32	Bi ₂ S ₃ /C nanorods as efficient anode materials for lithium-ion batteries. Dalton Transactions, 2019, 48, 1906-1914.	1.6	48
33	FeS2@Porous octahedral carbon derived from metal-organic framework as a stable and high capacity anode for lithium-ion batteries. Electrochimica Acta, 2019, 318, 673-682.	2.6	47
34	A novel Zr-MOF-based and polyaniline-coated UIO-67@Se@PANI composite cathode for lithium–selenium batteries. Dalton Transactions, 2019, 48, 10191-10198.	1.6	17
35	Zeolitic-imidazolate framework combined with MnO2 as the sulfur host material with excellent performance in lithium-sulfur batteries. Journal of Alloys and Compounds, 2019, 793, 16-23.	2.8	21
36	ZIF-67@Se@MnO ₂ : A Novel Co-MOF-Based Composite Cathode for Lithium–Selenium Batteries. Journal of Physical Chemistry C, 2019, 123, 2048-2055.	1.5	35

#	Article	IF	CITATIONS
37	Strong covalent interaction Fe2O3/nitrogen-doped porous carbon fiber hybrids as free-standing anodes for lithium-ion batteries. Journal of Materials Science, 2019, 54, 6500-6514.	1.7	19
38	Facile synthesis of amorphous UiO-66 (Zr-MOF) for supercapacitor application. Journal of Alloys and Compounds, 2018, 733, 8-14.	2.8	113
39	Facile preparation of four SnOx-C hybrids with superior electrochemical performance for lithium-ion batteries. Electrochimica Acta, 2018, 288, 20-30.	2.6	10
40	Improved Specific Capacity of Nb ₂ O ₅ by Coating on Carbon Materials for Lithiumâ€kon Batteries. ChemElectroChem, 2018, 5, 3468-3477.	1.7	8
41	Realizing uniform dispersion of MnO ₂ with the post-synthetic modification of metal–organic frameworks (MOFs) for advanced lithium ion battery anodes. Dalton Transactions, 2018, 47, 13657-13667.	1.6	20
42	Systematic post-synthetic modification of metal-organic framework (ZIF-67) with superior cyclability for lithium-ion batteries. Electrochimica Acta, 2018, 282, 276-285.	2.6	16
43	Two-step method to synthesize spinel Co3O4-MnCo2O4 with excellent performance for lithium ion batteries. Chemical Engineering Journal, 2018, 334, 2021-2029.	6.6	62
44	Porous sulfated metal oxide SO4 2â^'/Fe2O3 as an anode material for Li-ion batteries with enhanced electrochemical performance. Journal of Nanoparticle Research, 2017, 19, 1.	0.8	5
45	Thin-film electrode based on zeolitic imidazolate frameworks (ZIF-8 and ZIF-67) with ultra-stable performance as a lithium-ion battery anode. Journal of Materials Science, 2017, 52, 3979-3991.	1.7	62
46	Synthesis and Electrochemical Performance of SnO <i>_x</i> Quantum Dots@ UiO-66 Hybrid for Lithium Ion Battery Applications. ACS Applied Materials & Interfaces, 2017, 9, 35030-35039.	4.0	45
47	Mn ₃ O ₄ /nitrogen-doped porous carbon fiber hybrids involving multiple covalent interactions and open voids as flexible anodes for lithium-ion batteries. Green Chemistry, 2017, 19, 5862-5873.	4.6	48
48	Synthesis and electrochemical performance of three-dimensionally ordered macroporous CoCr2O4 as an anode material for lithium ion batteries. Electrochimica Acta, 2017, 247, 1-11.	2.6	20
49	Amorphous Cobalt Boron Alloy@Graphene Oxide Nanocomposites for Pseudocapacitor Applications. Journal of Materials Science and Technology, 2017, 33, 438-443.	5.6	9
50	Flower-like Ni3(NO3)2(OH)4@Zr-metal organic framework (UiO-66) composites as electrode materials for high performance pseudocapacitors. Ionics, 2016, 22, 2545-2551.	1.2	22
51	Mechanism of electrochemical lithiation of a metal-organic framework without redox-active nodes. Journal of Chemical Physics, 2016, 144, 194702.	1.2	41
52	Three-dimensionally ordered macroporous SnO2 as anode materials for lithium ion batteries. Ceramics International, 2016, 42, 18887-18893.	2.3	34
53	Three-dimensionally Ordered Macroporous β-Bi2O3 with Enhanced Electrochemical Performance in a Li-ion Battery. Electrochimica Acta, 2016, 214, 103-109.	2.6	37
54	Synthesis and electrochemical characterization of Ni-B/ZIF-8 as electrode materials for supercapacitors. Electronic Materials Letters, 2016, 12, 645-650.	1.0	9

#	Article	IF	CITATIONS
55	Adsorption desulfurization study with ionic liquid compound ZrO2/PSMIMHSO4. Applied Petrochemical Research, 2016, 6, 361-366.	1.3	2
56	Nanocomposites of zeolitic imidazolate frameworks on graphene oxide for pseudocapacitor applications. Journal of Applied Electrochemistry, 2016, 46, 441-450.	1.5	63
57	A facile synthesis of SO42â~'/SnO2 solid superacid nanoparticles as anode materials for lithium-ion batteries. Electrochemistry Communications, 2016, 62, 9-12.	2.3	10
58	Facile synthesis of rod-like Bi 2 O 3 nanoparticles as an electrode material for pseudocapacitors. Ceramics International, 2016, 42, 2099-2105.	2.3	72
59	Facile synthesis and supercapacitive properties of Zr-metal organic frameworks (UiO-66). RSC Advances, 2015, 5, 17601-17605.	1.7	111
60	Deep desulfurization by oxidation using an active ionic liquidâ€supported Zr metal–organic framework as catalyst. Applied Organometallic Chemistry, 2015, 29, 96-100.	1.7	44
61	In2O3 Nanoparticles on Three-Dimensionally Ordered Macroporous (3DOM) Carbon for Pseudocapacitor Electrodes. Electrochimica Acta, 2015, 176, 861-867.	2.6	19
62	A facile approach to prepare Bi(OH) ₃ nanoflakes as high-performance pseudocapacitor materials. New Journal of Chemistry, 2015, 39, 5927-5930.	1.4	15
63	Synthesis of ordered mesoporous carbon nanofiber arrays/nickel–boron amorphous alloy with high electrochemical performance for supercapacitor. Journal of Materials Science, 2015, 50, 4622-4628.	1.7	10
64	New imidazole-type acidic ionic liquid polymer for biodiesel synthesis from vegetable oil. Chemical Engineering and Processing: Process Intensification, 2015, 93, 61-65.	1.8	22
65	Synthesis of nickel carbonate hydroxide@zeolitic imidazolate framework-67 (Ni2CO3(OH)2@ZIF-67) for pseudocapacitor applications. Journal of Applied Electrochemistry, 2015, 45, 541-547.	1.5	19
66	Synthesis of nickel oxalate/zeolitic imidazolate framework-67 (NiC ₂ O ₄ /ZIF-67) as a supercapacitor electrode. New Journal of Chemistry, 2015, 39, 94-97.	1.4	60
67	Electrochemical capacitor behavior of SO42-/MxOy (M-Fe, Ti, Zr, Sn). Ceramics International, 2015, 41, 3791-3799.	2.3	3
68	A novel 2D supramolecular compound of zwitterion and polyoxoanion and its application in catalytic desulfurization. Inorganica Chimica Acta, 2015, 425, 108-113.	1.2	6
69	Synthesis of amorphous cobalt-boron alloy/highly ordered mesoporous carbon nanofiber arrays as advanced pseudocapacitor material. Journal of Solid State Electrochemistry, 2015, 19, 593-598.	1.2	7
70	Ultrafine nano zirconia as electrochemical pseudocapacitor material. Ceramics International, 2015, 41, 2626-2630.	2.3	22
71	Deep oxidation desulfurization with a new imidazole-type acidic ionic liquid polymer. RSC Advances, 2014, 4, 58800-58804.	1.7	17
72	The calcined zeolitic imidazolate framework-8 (ZIF-8) under different conditions as electrode for supercapacitor applications. Journal of Solid State Electrochemistry, 2014, 18, 3203-3207.	1.2	40

#	Article	IF	CITATIONS
73	Synthesis of nickel carbonate hydroxide/zeolitic imidazolate framework-8 as a supercapacitors electrode. RSC Advances, 2014, 4, 36366-36371.	1.7	34
74	An amorphous nickel–cobalt–boron alloy as advanced pseudocapacitor material. New Journal of Chemistry, 2014, 38, 4666-4669.	1.4	16
75	Esterification of cooking oil for biodiesel production using composites Cs2.5H0.5PW12O40/ionic liquids catalysts. Applied Petrochemical Research, 2014, 4, 305-312.	1.3	9
76	Amorphous nickel–boron and nickel–manganese–boron alloy as electrochemical pseudocapacitor materials. RSC Advances, 2014, 4, 27800-27804.	1.7	26
77	<pre><mml:math altimg="si0008.gif" overflow="scroll" xmlns:mml="http://www.w3.org/1998/Math/MathML"><mml:msup><mml:mrow><mml:mi mathvariant="normal">SO</mml:mi></mml:mrow><mml:mrow><mml:mrow>4</mml:mrow></mml:mrow></mml:msup></mml:math></pre>	ub ^{2:3} mml:	nrow≻ <mm< td=""></mm<>
78	The electrochemical performance of SnO2 quantum dots@zeolitic imidazolate frameworks-8 (ZIF-8) composite material for supercapacitors. Materials Letters, 2014, 128, 208-211.	1.3	68
79	Electrochemical performance of metal-organic framework synthesized by a solvothermal method for supercapacitors. Russian Journal of Electrochemistry, 2013, 49, 983-986.	0.3	40
80	Effect of Hydrothermal Temperature on the Structure and Electrochemical Performance of Manganese Compound/Ordered Mesoporous Carbon Composites for Supercapacitors. Materials and Manufacturing Processes, 2012, 27, 119-124.	2.7	24
81	Facile synthesis of MnO2/ordered mesoporous carbon composite for supercapacitors. Micro and Nano Letters, 2011, 6, 982.	0.6	0
82	Preparation of Ni/Mn compounds/ordered mesoporous carbon composite for use in an electrochemical supercapacitor. Journal of Applied Electrochemistry, 2011, 41, 901-907.	1.5	5
83	Ordered mesoporous carbon/SnO2 composites as the electrode material for supercapacitors. Journal Wuhan University of Technology, Materials Science Edition, 2011, 26, 407-411.	0.4	7
84	Study on the Catalyst of Methylcyclohexane Dehydrogenation Using Ionic Liquid. , 2011, , .		0
85	The electrochemical performance of ordered mesoporous carbon/nickel compounds composite material for supercapacitor. Journal of Solid State Chemistry, 2010, 183, 2932-2936.	1.4	22