Jun Hong Noh

List of Publications by Citations

Source: https://exaly.com/author-pdf/2942511/jun-hong-noh-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

34,768 118 45 111 h-index g-index citations papers 118 12.8 38,150 7.57 L-index avg, IF ext. citations ext. papers

#	Paper	IF	Citations
111	Solvent engineering for high-performance inorganic-organic hybrid perovskite solar cells. <i>Nature Materials</i> , 2014 , 13, 897-903	27	4981
110	SOLAR CELLS. High-performance photovoltaic perovskite layers fabricated through intramolecular exchange. <i>Science</i> , 2015 , 348, 1234-7	33.3	4908
109	Compositional engineering of perovskite materials for high-performance solar cells. <i>Nature</i> , 2015 , 517, 476-80	50.4	4611
108	Iodide management in formamidinium-lead-halide-based perovskite layers for efficient solar cells. <i>Science</i> , 2017 , 356, 1376-1379	33.3	4055
107	Chemical management for colorful, efficient, and stable inorganic-organic hybrid nanostructured solar cells. <i>Nano Letters</i> , 2013 , 13, 1764-9	11.5	3520
106	Efficient inorganicBrganic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors. <i>Nature Photonics</i> , 2013 , 7, 486-491	33.9	2185
105	Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). <i>Nature</i> , 2019 , 567, 51	1-50.5	1366
104	Colloidally prepared La-doped BaSnO electrodes for efficient, photostable perovskite solar cells. <i>Science</i> , 2017 , 356, 167-171	33.3	88o
103	Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor. <i>Energy and Environmental Science</i> , 2014 , 7, 2614-2618	35.4	599
102	o-Methoxy substituents in spiro-OMeTAD for efficient inorganic-organic hybrid perovskite solar cells. <i>Journal of the American Chemical Society</i> , 2014 , 136, 7837-40	16.4	597
101	Benefits of very thin PCBM and LiF layers for solution-processed pff perovskite solar cells. <i>Energy and Environmental Science</i> , 2014 , 7, 2642-2646	35.4	570
100	Fabrication of Efficient Formamidinium Tin Iodide Perovskite Solar Cells through SnFtPyrazine Complex. <i>Journal of the American Chemical Society</i> , 2016 , 138, 3974-7	16.4	508
99	Efficient inorganic-organic hybrid perovskite solar cells based on pyrene arylamine derivatives as hole-transporting materials. <i>Journal of the American Chemical Society</i> , 2013 , 135, 19087-90	16.4	456
98	Efficient CH3 NH3 PbI3 Perovskite Solar Cells Employing Nanostructured p-Type NiO Electrode Formed by a Pulsed Laser Deposition. <i>Advanced Materials</i> , 2015 , 27, 4013-9	24	414
97	High-performance flexible perovskite solar cells exploiting Zn2SnO4 prepared in solution below 100 LC. <i>Nature Communications</i> , 2015 , 6, 7410	17.4	351
96	Highly Improved Sb2S3 Sensitized-Inorganic Drganic Heterojunction Solar Cells and Quantification of Traps by Deep-Level Transient Spectroscopy. <i>Advanced Functional Materials</i> , 2014 , 24, 3587-3592	15.6	346
95	Beneficial Effects of PbI2 Incorporated in Organo-Lead Halide Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2016 , 6, 1502104	21.8	335

94	Rational Strategies for Efficient Perovskite Solar Cells. Accounts of Chemical Research, 2016, 49, 562-72	24.3	256
93	Nanostructured TiO2/CH3NH3PbI3 heterojunction solar cells employing spiro-OMeTAD/Co-complex as hole-transporting material. <i>Journal of Materials Chemistry A</i> , 2013 , 1, 118	42	253
92	Nb-Doped TiO2: A New Compact Layer Material for TiO2 Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 6878-6882	3.8	197
91	Intact 2D/3D halide junction perovskite solar cells via solid-phase in-plane growth. <i>Nature Energy</i> , 2021 , 6, 63-71	62.3	155
90	In vitro and in vivo evaluation of the bioactivity of hydroxyapatite-coated polyetheretherketone biocomposites created by cold spray technology. <i>Acta Biomaterialia</i> , 2013 , 9, 6177-87	10.8	150
89	Engineering interface structures between lead halide perovskite and copper phthalocyanine for efficient and stable perovskite solar cells. <i>Energy and Environmental Science</i> , 2017 , 10, 2109-2116	35.4	147
88	Fabrication of metal-oxide-free CH3NH3PbI3 perovskite solar cells processed at low temperature. Journal of Materials Chemistry A, 2015 , 3, 3271-3275	13	147
87	Sb(2)Se(3) -sensitized inorganic-organic heterojunction solar cells fabricated using a single-source precursor. <i>Angewandte Chemie - International Edition</i> , 2014 , 53, 1329-33	16.4	124
86	Synthesis of Cu2PO4OH Hierarchical Superstructures with Photocatalytic Activity in Visible Light. <i>Advanced Functional Materials</i> , 2008 , 18, 2154-2162	15.6	123
85	Al-Doped ZnO Thin Film: A New Transparent Conducting Layer for ZnO Nanowire-Based Dye-Sensitized Solar Cells. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 7185-7189	3.8	119
84	Thermal Stability of CuSCN Hole Conductor-Based Perovskite Solar Cells. <i>ChemSusChem</i> , 2016 , 9, 2592-7	2 8.9 6	118
83	Reducing Carrier Density in Formamidinium Tin Perovskites and Its Beneficial Effects on Stability and Efficiency of Perovskite Solar Cells. <i>ACS Energy Letters</i> , 2018 , 3, 46-53	20.1	110
82	Efficient Inorganic-Organic Heterojunction Solar Cells Employing Sb2(Sx/Se1-x)3 Graded-Composition Sensitizers. <i>Advanced Energy Materials</i> , 2014 , 4, 1301680	21.8	102
81	Low-Temperature Hydrothermal Synthesis of Pure BiFeO3 Nanopowders Using Triethanolamine and Their Applications as Visible-Light Photocatalysts. <i>Journal of the American Ceramic Society</i> , 2008 , 91, 3753-3755	3.8	102
80	General strategy for fabricating transparent TiO2 nanotube arrays for dye-sensitized photoelectrodes: illumination geometry and transport properties. <i>ACS Nano</i> , 2011 , 5, 2647-56	16.7	100
79	Energy-level engineering of the electron transporting layer for improving open-circuit voltage in dye and perovskite-based solar cells. <i>Energy and Environmental Science</i> , 2019 , 12, 958-964	35.4	88
78	Indolo[3,2-]indole-based crystalline hole-transporting material for highly efficient perovskite solar cells. <i>Chemical Science</i> , 2017 , 8, 734-741	9.4	83
77	Tailoring of Electron-Collecting Oxide Nanoparticulate Layer for Flexible Perovskite Solar Cells. Journal of Physical Chemistry Letters, 2016 , 7, 1845-51	6.4	83

76	Fabrication of CuInTe2 and CuInTe(2-x)Se(x) ternary gradient quantum dots and their application to solar cells. <i>ACS Nano</i> , 2013 , 7, 4756-63	16.7	75
75	Effective Electron Blocking of CuPC-Doped Spiro-OMeTAD for Highly Efficient Inorganic©rganic Hybrid Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2015 , 5, 1501320	21.8	74
74	Fast two-step deposition of perovskite via mediator extraction treatment for large-area, high-performance perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2018 , 6, 12447-12454	13	60
73	Functional Multilayered Transparent Conducting Oxide Thin Films for Photovoltaic Devices. <i>Journal of Physical Chemistry C</i> , 2009 , 113, 1083-1087	3.8	56
72	Spontaneous interface engineering for dopant-free poly(3-hexylthiophene) perovskite solar cells with efficiency over 24%. <i>Energy and Environmental Science</i> , 2021 , 14, 2419-2428	35.4	56
71	Synthesis of CdSe-TiO2 nanocomposites and their applications to TiO2 sensitized solar cells. <i>Langmuir</i> , 2009 , 25, 5348-51	4	54
70	Effects of carbon content on the photocatalytic activity of C/BiVO4 composites under visible light irradiation. <i>Materials Chemistry and Physics</i> , 2010 , 119, 106-111	4.4	51
69	Spatial Distribution of Lead Iodide and Local Passivation on Organo-Lead Halide Perovskite. <i>ACS Applied Materials & Distribution of Lead Iodide and Local Passivation on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution of Lead Iodide and Local Passivation on Organo-Lead Halide Perovskite. <i>ACS Applied Materials & Distribution of Lead Iodide and Local Passivation on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution of Lead Iodide and Local Passivation on Organo-Lead Halide Perovskite. <i>ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Materials & Distribution on Organo-Lead Halide Perovskite. ACS Applied Halide Perovskite Perovskite Perovskite Account Applied Perovskite </i></i></i>	9.5	50
68	Nanowire-Based Three-Dimensional Transparent Conducting Oxide Electrodes for Extremely Fast Charge Collection. <i>Advanced Energy Materials</i> , 2011 , 1, 829-835	21.8	48
67	Well-Organized Mesoporous TiO2 Photoelectrodes by Block Copolymer-Induced Solfiel Assembly for Inorganic Drganic Hybrid Perovskite Solar Cells. <i>Journal of Physical Chemistry C</i> , 2014 , 118, 16688-16	6 9 3	45
66	Tailoring the Morphology and Structure of Nanosized Zn2SiO4: Mn2+ Phosphors Using the Hydrothermal Method and Their Luminescence Properties. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 10330-10335	3.8	45
65	Carrier-resolved photo-Hall effect. <i>Nature</i> , 2019 , 575, 151-155	50.4	40
64	Nanostructured Ti-doped hematite (Fe2O3) photoanodes for efficient photoelectrochemical water oxidation. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 17501-17507	6.7	39
63	Visible-Light-Induced Photocatalytic Activity in FeNbO4 Nanoparticles. <i>Journal of Physical Chemistry C</i> , 2008 , 112, 18393-18398	3.8	38
62	A Simple Method To Control Morphology of Hydroxyapatite Nano- and Microcrystals by Altering Phase Transition Route. <i>Crystal Growth and Design</i> , 2013 , 13, 3414-3418	3.5	36
61	Controllable synthesis of single crystalline Sn-based oxides and their application in perovskite solar cells. <i>Journal of Materials Chemistry A</i> , 2017 , 5, 79-86	13	36
60	Preparation and photoluminescence properties of EKCaPO4: Eu2+ phosphors for near UV-based white LEDs. <i>Optical Materials</i> , 2011 , 33, 1036-1040	3.3	34
59	IndiumIIinDxide-Based Transparent Conducting Layers for Highly Efficient Photovoltaic Devices. Journal of Physical Chemistry C, 2009, 113, 7443-7447	3.8	33

(2019-2017)

58	Cold-spray coating of hydroxyapatite on a three-dimensional polyetheretherketone implant and its biocompatibility evaluated by in vitro and in vivo minipig model. <i>Journal of Biomedical Materials Research - Part B Applied Biomaterials</i> , 2017 , 105, 647-657	3.5	30
57	3-D TiO2 nanoparticle/ITO nanowire nanocomposite antenna for efficient charge collection in solid state dye-sensitized solar cells. <i>Nanoscale</i> , 2014 , 6, 6127-32	7.7	29
56	Enhanced photovoltaic properties of overlayer-coated nanocrystalline TiO2 dye-sensitized solar cells (DSSCs). <i>Journal of Electroceramics</i> , 2009 , 23, 422-425	1.5	29
55	Transmittance optimized nb-doped TiO2/Sn-doped In2O3 multilayered photoelectrodes for dye-sensitized solar cells. <i>Solar Energy Materials and Solar Cells</i> , 2012 , 96, 276-280	6.4	28
54	Steps toward efficient inorganic@rganic hybrid perovskite solar cells. MRS Bulletin, 2015, 40, 648-653	3.2	28
53	Aligned Photoelectrodes with Large Surface Area Prepared by Pulsed Laser Deposition. <i>Journal of Physical Chemistry C</i> , 2012 , 116, 8102-8110	3.8	28
52	A Newly Designed Nb-Doped TiO2/Al-Doped ZnO Transparent Conducting Oxide Multilayer for Electrochemical Photoenergy Conversion Devices. <i>Journal of Physical Chemistry C</i> , 2010 , 114, 13867-138	3 7 18	28
51	Highly Durable and Flexible Transparent Electrode for Flexible Optoelectronic Applications. <i>ACS Applied Materials & Amp; Interfaces</i> , 2018 , 10, 30706-30715	9.5	27
50	Reversible change in electrical and optical properties in epitaxially grown Al-doped ZnO thin films. Journal of Applied Physics, 2008 , 104, 073706	2.5	27
49	Microwave dielectric properties of nanocrystalline TiO2 prepared using spark plasma sintering. Journal of the European Ceramic Society, 2007 , 27, 2937-2940	6	27
48	Quaternary semiconductor Cu2FeSnS4 nanoparticles as an alternative to Pt catalysts. <i>RSC Advances</i> , 2013 , 3, 24918	3.7	26
47	SrNb2O6 nanotubes with enhanced photocatalytic activity. <i>Journal of Materials Chemistry</i> , 2010 , 20, 397	79	26
46	Simultaneous Ligand Exchange Fabrication of Flexible Perovskite Solar Cells using Newly Synthesized Uniform Tin Oxide Quantum Dots. <i>Journal of Physical Chemistry Letters</i> , 2018 , 9, 5460-5467	6.4	25
45	Mobility enhanced photoactivity in sol-gel grown epitaxial anatase TiO2 films. <i>Langmuir</i> , 2008 , 24, 2695	-84	24
44	Tin doped indium oxide core T iO2 shell nanowires on stainless steel mesh for flexible photoelectrochemical cells. <i>Applied Physics Letters</i> , 2012 , 100, 084104	3.4	23
43	Luminescent characteristics of green emitting Li2Ca2Si2O7:Eu2+ phosphor. <i>Materials Letters</i> , 2012 , 79, 112-115	3.3	22
42	Recent Progress in Metal Halide Perovskite-Based Tandem Solar Cells. <i>Advanced Materials</i> , 2020 , 32, e2002228	24	19
41	Impact of Electrode Materials on Process Environmental Stability of Efficient Perovskite Solar Cells. Joule, 2019 , 3, 1977-1985	27.8	17

40	PbS colloidal quantum-dot-sensitized inorganic-organic hybrid solar cells with radial-directional charge transport. <i>ChemPhysChem</i> , 2014 , 15, 1024-7	3.2	17
39	Heterojunction Fe2O3-SnO2 Nanostructured Photoanode for Efficient Photoelectrochemical Water Splitting. <i>Jom</i> , 2014 , 66, 664-669	2.1	16
38	Single-Solution Bar-Coated Halide Perovskite Films via Mediating Crystallization for Scalable Solar Cell Fabrication. <i>ACS Applied Materials & Discrete Solar</i> 11, 11537-11544	9.5	14
37	Band Alignment Engineering between Planar SnO and Halide Perovskites via Two-Step Annealing. Journal of Physical Chemistry Letters, 2019 , 10, 6545-6550	6.4	14
36	Preparation and characterization of nano-sized Y3Al5O12:Ce3+ phosphor by high-energy milling process. <i>Current Applied Physics</i> , 2013 , 13, S69-S74	2.6	14
35	Photoluminescence and electrical properties of epitaxial Al-doped ZnO transparent conducting thin films. <i>Physica Status Solidi (A) Applications and Materials Science</i> , 2009 , 206, 2133-2138	1.6	14
34	Synthesis and photoactivity of hetero-nanostructured SrTiO3. <i>Journal of the Ceramic Society of Japan</i> , 2010 , 118, 876-880	1	14
33	Correlation of anatase particle size with photocatalytic properties. <i>Physica Status Solidi (A)</i> Applications and Materials Science, 2010 , 207, 2288-2291	1.6	14
32	In2O3:Sn/TiO2/CdS heterojunction nanowire array photoanode in photoelectrochemical cells. <i>International Journal of Hydrogen Energy</i> , 2014 , 39, 17473-17480	6.7	13
31	Transparent Sn-doped In2O3 electrodes with a nanoporous surface for enhancing the performance of perovskite solar cells. <i>Journal of Power Sources</i> , 2019 , 418, 152-161	8.9	12
30	Waste Liquid-Crystal Display Glass-Directed Fabrication of Silicon Particles for Lithium-Ion Battery Anodes. <i>ACS Sustainable Chemistry and Engineering</i> , 2019 , 7, 15329-15338	8.3	11
29	TiO2 nanocrystals shell layer on highly conducting indium tin oxide nanowire for photovoltaic devices. <i>Nanoscale</i> , 2013 , 5, 3520-6	7.7	11
28	Enhancing the Densification of Nanocrystalline TiO2 by Reduction in Spark Plasma Sintering. Journal of the American Ceramic Society, 2010 , 93, 993-997	3.8	11
27	Highly Efficient Large-Area Organic Photovoltaic Module with a 350 nm Thick Active Layer Using a Random Terpolymer Donor. <i>Chemistry of Materials</i> , 2020 , 32, 3469-3479	9.6	10
26	A Hierarchically Organized Photoelectrode Architecture for Highly Efficient CdS/CdSe-Sensitized Solar Cells. <i>Advanced Energy Materials</i> , 2014 , 4, 1300395	21.8	10
25	Influence of niobium doping in hierarchically organized titania nanostructure on performance of dye-sensitized solar cells. <i>Journal of Nanoscience and Nanotechnology</i> , 2012 , 12, 5091-5	1.3	10
24	Facile Hydrothermal Synthesis of SrNb2O6 Nanotubes with Rhombic Cross Sections. <i>Crystal Growth and Design</i> , 2010 , 10, 2447-2450	3.5	9
23	Dielectric properties of nanocrystalline TiO2 prepared using spark plasma sintering. <i>Journal of Electroceramics</i> , 2006 , 17, 913-917	1.5	8

(2021-2021)

22	Simultaneous Enhanced Efficiency and Stability of Perovskite Solar Cells Using Adhesive Fluorinated Polymer Interfacial Material. <i>ACS Applied Materials & Amp; Interfaces</i> , 2021 , 13, 35595-35605	9.5	8	
21	Photon recycling in halide perovskite solar cells for higher efficiencies. <i>MRS Bulletin</i> , 2020 , 45, 439-448	3.2	7	
20	Ternary diagrams of the phase, optical bandgap energy and photoluminescence of mixed-halide perovskites. <i>Acta Materialia</i> , 2019 , 181, 460-469	8.4	6	
19	Tailoring of Ligand-Off Nanoparticles Inks for Thin p-Type Oxide Overlayers Formation with Maintaining Intact Halide Perovskite. <i>Advanced Functional Materials</i> , 2021 , 31, 2100863	15.6	6	
18	Transparent-conducting-oxide nanowire arrays for efficient photoelectrochemical energy conversion. <i>Nanoscale</i> , 2014 , 6, 8649-55	7.7	5	
17	Electrical and optical properties of epitaxial and polycrystalline undoped and Al-doped ZnO thin films grown by pulsed laser deposition. <i>Journal of Electroceramics</i> , 2009 , 23, 497-501	1.5	5	
16	Transferable transparent electrodes of liquid metals for bifacial perovskite solar cells and heaters. <i>Nano Energy</i> , 2022 , 93, 106857	17.1	5	
15	Efficient n-i-p Monolithic Perovskite/Silicon Tandem Solar Cells with Tin Oxide via a Chemical Bath Deposition Method. <i>Energies</i> , 2021 , 14, 7614	3.1	4	
14	Recent Progress in the Semiconducting Oxide Overlayer for Halide Perovskite Solar Cells. <i>Advanced Energy Materials</i> , 2021 , 11, 2003119	21.8	4	
13	Synthesis of carbon-incorporated titanium oxide nanocrystals by pulsed solution plasma: electrical, optical investigation and nanocrystals analysis. <i>RSC Advances</i> , 2015 , 5, 9497-9502	3.7	3	
12	Seed-layer mediated orientation evolution in dielectric Biantiabo thin films. <i>Applied Physics Letters</i> , 2007 , 91, 232903	3.4	3	
11	Synthesis and characterization of nano-particulate BaTiO3 for ceramic/polymer composite capacitor. <i>Journal of Nanoscience and Nanotechnology</i> , 2010 , 10, 1361-6	1.3	2	
10	Effects of Ta-substitution on the dielectric properties of Ba6Ti2(Nb1\(\text{Nb1}\text{MTax}\)8O30 thin films. <i>Journal of the European Ceramic Society</i> , 2007 , 27, 2927-2931	6	2	
9	Perovskite/Silicon Tandem Solar Cells with a Voc of 1784 mV Based on an Industrially Feasible 25 cm2 TOPCon Silicon Cell. <i>ACS Applied Energy Materials</i> ,	6.1	2	
8	Important Role of Alloyed Polymer Acceptor for High Efficiency and Stable Large-area Organic Photovoltaics. <i>Nano Energy</i> , 2022 , 107187	17.1	2	
7	Solar-Driven Simultaneous Electrochemical CO2 Reduction and Water Oxidation Using Perovskite Solar Cells. <i>Energies</i> , 2022 , 15, 270	3.1	2	
6	Effects of stretching on the molecular packing structure of conjugated polymers with hydrogen bonding. <i>Journal of Materials Chemistry C</i> , 2021 , 9, 15132-15140	7.1	1	
5	Effects of photon recycling and scattering in high-performance perovskite solar cells <i>Science Advances</i> , 2021 , 7, eabj1363	14.3	1	

4	Oxide Electrodes for Extremely Fast Charge Collection (Adv. Energy Mater. 5/2011). <i>Advanced Energy Materials</i> , 2011 , 1, 702-702	21.8
3	Structure and dielectric properties of cubic Bi2(Zn1BTa2B)2O7 thin films. <i>Journal of Applied Physics</i> , 2009 , 106, 084103	2.5
2	Influence of stress on structural and dielectric anomaly of Bi2(Zn1/3Ta2/3)207 thin films. <i>Materials Research Society Symposia Proceedings</i> , 2005 , 875, 1	
1	Halide Perovskites: Tailoring of Ligand-Off Nanoparticles Inks for Thin p-Type Oxide Overlayers Formation with Maintaining Intact Halide Perovskite (Adv. Funct. Mater. 31/2021). <i>Advanced Functional Materials</i> , 2021 , 31, 2170223	15.6