Jingbo Zhao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/2942462/publications.pdf

Version: 2024-02-01

218592 454834 11,861 29 26 30 h-index citations g-index papers 30 30 30 7729 times ranked docs citations citing authors all docs

#	Article	IF	CITATIONS
1	Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nature Communications, 2014, 5, 5293.	5.8	2,854
2	Efficient organic solar cells processed from hydrocarbon solvents. Nature Energy, 2016, $1,$	19.8	2,129
3	Nonfullerene Acceptor Molecules for Bulk Heterojunction Organic Solar Cells. Chemical Reviews, 2018, 118, 3447-3507.	23.0	1,371
4	Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nature Energy, $2016,1,.$	19.8	1,167
5	Quantitative relations between interaction parameter, miscibility and function in organic solar cells. Nature Materials, 2018, 17, 253-260.	13.3	556
6	Terthiophene-Based D–A Polymer with an Asymmetric Arrangement of Alkyl Chains That Enables Efficient Polymer Solar Cells. Journal of the American Chemical Society, 2015, 137, 14149-14157.	6.6	386
7	High-efficiency non-fullerene organic solar cells enabled by a difluorobenzothiadiazole-based donor polymer combined with a properly matched small molecule acceptor. Energy and Environmental Science, 2015, 8, 520-525.	15.6	379
8	A Tetraphenylethylene Coreâ€Based 3D Structure Small Molecular Acceptor Enabling Efficient Nonâ€Fullerene Organic Solar Cells. Advanced Materials, 2015, 27, 1015-1020.	11.1	362
9	Donor polymer design enables efficient non-fullerene organic solar cells. Nature Communications, 2016, 7, 13094.	5.8	328
10	Improved Performance of Allâ€Polymer Solar Cells Enabled by Naphthodiperylenetetraimideâ€Based Polymer Acceptor. Advanced Materials, 2017, 29, 1700309.	11.1	306
11	Highâ€Performance Nonâ€Fullerene Polymer Solar Cells Based on a Pair of Donor–Acceptor Materials with Complementary Absorption Properties. Advanced Materials, 2015, 27, 7299-7304.	11.1	230
12	Highâ€Efficiency Allâ€Polymer Solar Cells Based on a Pair of Crystalline Lowâ€Bandgap Polymers. Advanced Materials, 2014, 26, 7224-7230.	11.1	228
13	Miscibility–Function Relations in Organic Solar Cells: Significance of Optimal Miscibility in Relation to Percolation. Advanced Energy Materials, 2018, 8, 1703058.	10.2	223
14	A Vinyleneâ€Bridged Perylenediimideâ€Based Polymeric Acceptor Enabling Efficient Allâ€Polymer Solar Cells Processed under Ambient Conditions. Advanced Materials, 2016, 28, 8483-8489.	11.1	222
15	Influence of Processing Parameters and Molecular Weight on the Morphology and Properties of Highâ€Performance PffBT4Tâ€⊋OD:PC ₇₁ BM Organic Solar Cells. Advanced Energy Materials, 2015, 5, 1501400.	10.2	166
16	Efficient Nonfullerene Organic Solar Cells with Small Driving Forces for Both Hole and Electron Transfer. Advanced Materials, 2018, 30, e1804215.	11.1	161
17	A Difluorobenzoxadiazole Building Block for Efficient Polymer Solar Cells. Advanced Materials, 2016, 28, 1868-1873.	11.1	125
18	An Electron Acceptor with Broad Visible–NIR Absorption and Unique Solid State Packing for As ast High Performance Binary Organic Solar Cells. Advanced Functional Materials, 2018, 28, 1802324.	7.8	116

#	Article	IF	CITATIONS
19	Efficient non-fullerene polymer solar cells enabled by tetrahedron-shaped core based 3D-structure small-molecular electron acceptors. Journal of Materials Chemistry A, 2015, 3, 13632-13636.	5.2	100
20	Dramatic performance enhancement for large bandgap thick-film polymer solar cells introduced by a difluorinated donor unit. Nano Energy, 2015, 15, 607-615.	8.2	93
21	Efficient Lowâ€Bandgap Polymer Solar Cells with High Openâ€Circuit Voltage and Good Stability. Advanced Energy Materials, 2015, 5, 1501282.	10.2	76
22	Integrated circuits based on conjugated polymer monolayer. Nature Communications, 2018, 9, 451.	5.8	69
23	A Facile Method to Fineâ€Tune Polymer Aggregation Properties and Blend Morphology of Polymer Solar Cells Using Donor Polymers with Randomly Distributed Alkyl Chains. Advanced Energy Materials, 2018, 8, 1701895.	10.2	62
24	Comparing non-fullerene acceptors with fullerene in polymer solar cells: a case study with FTAZ and PyCNTAZ. Journal of Materials Chemistry A, 2017, 5, 4886-4893.	5.2	44
25	The influence of spacer units on molecular properties and solar cell performance of non-fullerene acceptors. Journal of Materials Chemistry A, 2015, 3, 20108-20112.	5.2	41
26	The Critical Impact of Material and Process Compatibility on the Active Layer Morphology and Performance of Organic Ternary Solar Cells. Advanced Energy Materials, 2019, 9, 1802293.	10.2	35
27	Isobenzofulvene-fullerene mono-adducts for organic photovoltaic applications. Journal of Materials Chemistry C, 2015, 3, 977-980.	2.7	11
28	Organic Solar Cells: A Tetraphenylethylene Coreâ€Based 3D Structure Small Molecular Acceptor Enabling Efficient Nonâ€Fullerene Organic Solar Cells (Adv. Mater. 6/2015). Advanced Materials, 2015, 27, 1014-1014.	11.1	9
29	Organic Solar Cells: Influence of Processing Parameters and Molecular Weight on the Morphology and Properties of High-Performance PffBT4T-2OD:PC71BM Organic Solar Cells (Adv. Energy Mater.) Tj ETQq1 1	0.7 843 14	rgBT /Overlo

3